A. | B. | C. | D. |
分析 令 t=f(x)-ex,由 f[f(x)-ex]=f(t)=1,求得t=0,可得f(x)的解析式,從而求得g(x)的解析式,再根據(jù)函數(shù)的定義域、單調(diào)性、值域,判斷函數(shù)g(x)的圖象特征.
解答 解:令 t=f(x)-ex,則f(x)=t+ex,由題意可得 f[f(x)-ex]=f(t)=1,
∴t+et=1,即 et=1-t,
∴t=0,即f(x)=ex.
∴函數(shù)g(x)=$\frac{f(x)+f(-x)}{f(x)-f(-x)}$=$\frac{{e}^{x}{+e}^{-x}}{{e}^{x}{-e}^{-x}}$=$\frac{{e}^{2x}+1}{{e}^{2x}-1}$=1+$\frac{2}{{e}^{2x}-1}$ (x≠0)),故排除C、D.
∴g(-x)=-g(x),故g(x)為奇函數(shù),故它的圖象關(guān)于原點(diǎn)對(duì)稱.
當(dāng)x>0時(shí),g(x)為單調(diào)遞減函數(shù),故排除B.
∵$\frac{2}{{e}^{2x}-1}$>0,∴g(x)>1,
故選:A.
點(diǎn)評(píng) 本題主要考查求函數(shù)的解析式,根據(jù)函數(shù)的定義域、單調(diào)性、值域,判斷函數(shù)的圖象特征,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{21}$ | B. | $\frac{2\sqrt{29}}{3}$ | C. | 2$\sqrt{21}$ | D. | 2$\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com