設函數(shù)
(1)求解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間;
(3)在給出的直角坐標系中用“五點作圖法”畫出函數(shù)在上的圖像.(要求列表、描點、連線)
科目:高中數(shù)學 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:閱讀理解
-1±
| ||
4 |
-1+
| ||
4 |
-1-
| ||
4 |
-1+
| ||
4 |
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
設函數(shù)
(1)當時,求曲線處的切線方程;
(2)當時,求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數(shù)的正負確定單調(diào)性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當……2分
∴
即為所求切線方程!4分
(2)當
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數(shù)的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com