15.設(shè)集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},則∁UA等于( 。
A.{1,2}B.{1,4}C.{2,4}D.{1,3,4}

分析 化簡(jiǎn)集合A,求出∁UA.

解答 解:集合U={1,2,3,4},
集合A={x∈N|x2-5x+4<0}={x∈N|1<x<4}={2,3},
所以∁UA={1,4}.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$<0,則△ABC( 。
A.一定是銳角三角形B.一定是直角三角形
C.一定是鈍角三角形D.是銳角或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.對(duì)于一組向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$(n∈N*),令$\overrightarrow{{S}_{n}}$=$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$,如果存在$\overrightarrow{{a}_{p}}$(p∈{1,2,3,…,n},使得|$\overrightarrow{{a}_{p}}$|≥|$\overrightarrow{{S}_{n}}$-$\overrightarrow{{a}_{p}}$|,那么稱$\overrightarrow{{a}_{p}}$是該向量組的“h向量”.
(1)設(shè)$\overrightarrow{{a}_{n}}$=(n,x+n)(n∈N*),若$\overrightarrow{{a}_{3}}$是向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,求實(shí)數(shù)x的取值范圍;
(2)若$\overrightarrow{{a}_{n}}$=(($\frac{1}{3}$)n-1•(-1)n(n∈N*),向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是否存在“h向量”?給出你的結(jié)論并說(shuō)明理由;
(3)已知$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$均是向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,其中$\overrightarrow{{a}_{1}}$=(sinx,cosx),$\overrightarrow{{a}_{2}}$=(2cosx,2sinx).設(shè)在平面直角坐標(biāo)系中有一點(diǎn)列Q1.Q2,Q3,…,Qn滿足:Q1為坐標(biāo)原點(diǎn),Q2為$\overrightarrow{{a}_{3}}$的位置向量的終點(diǎn),且Q2k+1與Q2k關(guān)于點(diǎn)Q1對(duì)稱,Q2k+2與Q2k+1(k∈N*)關(guān)于點(diǎn)Q2對(duì)稱,求|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,如果輸入的a=1,b=1,那么輸出的值等于( 。
A.21B.34C.55D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知拋物線C頂點(diǎn)在坐標(biāo)原點(diǎn),準(zhǔn)線垂直于x軸,且過(guò)點(diǎn)M(2,2),A,B是拋物線C上兩點(diǎn),滿足MA⊥MB,
(1)求拋物線C方程;
(2)證明直線AB過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分圖象如圖所示,則f(x)=sin($\frac{π}{4}$x+$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知一扇形的弧所對(duì)的圓心角為54°,半徑r=20cm,則扇形的周長(zhǎng)為(6π+40)cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.?dāng)?shù)列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{{a_n}+2}}$,則數(shù)列{an}的通項(xiàng)公式an=$\frac{2}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)f(x)=ax2+2x是奇函數(shù),則f($\frac{1}{2}$)=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案