18.已知命題p:方程x2-2mx+7m-10=0無(wú)解,命題q:x∈(0,+∞),x2-mx+4≥0恒成立,若p∨q是真命題,且¬(p∧q)也是真命題,求m的取值范圍.

分析 由p∨q是真命題,且¬(p∧q)也是真命題得:p與q為一真一假;分別求出命題p,q為真假時(shí)參數(shù)m的范圍,可得答案.

解答 解:當(dāng)命題p為真時(shí),有:△=(-2m)2-4(7m-10)<0,
解得:2<m<5;(3分)
當(dāng)命題q為真時(shí),有:m≤$\frac{{x}^{2}+4}{x}$=x+$\frac{4}{x}$,對(duì)x∈(0,+∞)恒成立,
即m≤(x+$\frac{4}{x}$)min,
而x∈(0,+∞)時(shí),(x+$\frac{4}{x}$)min=4,當(dāng)x=2時(shí)取等號(hào).
即m≤4.(7分)
由p∨q是真命題,且¬(p∧q)也是真命題得:p與q為一真一假;(9分)
當(dāng)p真q假時(shí),$\left\{\begin{array}{l}2<m<5\\ m>4\end{array}\right.$,即4<m<5;
當(dāng)p假q真時(shí),$\left\{\begin{array}{l}m≤2,或m≥5\\ m≤4\end{array}\right.$,即m≤2或m≥5,(11分)
綜上,所求m的取值范圍是(-∞,2]∪(4,5).(12分)

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,方程根的個(gè)數(shù)判斷,函數(shù)恒成立等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(x)=a${\;}^{x-\frac{1}{2}}}$(a>0且a≠1),若f(lga)=$\sqrt{10}$,則a=10或${10}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿足an=3an-1+3n-1(n∈N*,n≥2)且a3=95.
(1)求a1,a2的值;
(2)求實(shí)數(shù)t,使得bn=$\frac{1}{{3}^{n}}$(an+t)(n∈N*)且{bn}為等差數(shù)列;
(3)在(2)條件下求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=x2,g(x)=ln|x|,則函數(shù)h(x)=f(x)-g(x)的零點(diǎn)的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知命題p:方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{m-5}$=1表示雙曲線,命題q:x∈(0,+∞),x2-mx+4≥0恒成立,若p∨q是真命題,且綈(p∧q)也是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{2x}{x+1}$.
(1)判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(2)求函數(shù)f(x)在區(qū)間[2,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=2f′(1)lnx-x,則f(x)在x=1處的切線方程為x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=3-3x的值域?yàn)椋ā 。?table class="qanwser">A.(-∞,3]B.(0,+∞)C.(-∞,0)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,圓O的直徑AB=8,圓周上過(guò)點(diǎn)C的切線與BA的延長(zhǎng)線交于點(diǎn)E,過(guò)點(diǎn)B作AC的平行線交EC的延長(zhǎng)線于點(diǎn)P.
(1)求證:BC2=AC•BP;
(2)若$EC=2\sqrt{5}$,求PB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案