4.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等差數(shù)列{bn}的前n項(xiàng)和為Tn,若此時滿足$\frac{S_n}{T_n}=\frac{n-3}{n+3}$,則$\frac{a_2}{{{b_{10}}+{b_{20}}}}+\frac{{{a_{28}}}}{{{b_{12}}+{b_{18}}}}$=(  )
A.1B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{13}{16}$

分析 利用b1+b29=b10+b20=b12+b18,a1+a29=a2+a28,及等差數(shù)列求和公式求解.

解答 解:$\frac{a_2}{{{b_{10}}+{b_{20}}}}+\frac{{{a_{28}}}}{{{b_{12}}+{b_{18}}}}$=$\frac{{a}_{2}}{_{1}+_{29}}+\frac{{a}_{28}}{_{1}+_{29}}$
=$\frac{{a}_{2}+{a}_{28}}{_{1}+_{29}}=\frac{{a}_{1}+{a}_{29}}{_{1}+_{29}}$=$\frac{\frac{29}{2}({a}_{1}+{a}_{29})}{\frac{29}{2}(_{1}+_{29})}$=$\frac{{s}_{29}}{{T}_{29}}=\frac{29-3}{29+3}=\frac{13}{16}$;
故選:D

點(diǎn)評 本題考查了等差數(shù)列的性質(zhì)、求和公式,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=n2-4n,數(shù)列{bn}中,b1=$\frac{a_2}{{3+{a_3}}}$對任意正整數(shù)$n≥2,{b_{n+1}}+{b_n}={({\frac{1}{3}})^n}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)μ,使得數(shù)列{3n•bn+μ}是等比數(shù)列?若存在,請求出實(shí)數(shù)μ及公比q的值,若不存在,請說明理由;
(3)求證:$\frac{1}{4}≤{b_1}+{b_2}+…+{b_n}<\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=10,且S6+3a7=S8+12,則公差d等于( 。
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱錐P-ABC中,PC⊥平面ABC,PC=4,AC=BC=3,∠ACB=90°.點(diǎn)D在線段AB上,AD=2DB.
(1)求異面直線BC與PD所成角的余弦值;
(2)求直線BC與平面PAB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx,g(x)=ex,其中a為常數(shù),e=2,718…
(1)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)若存在x使不等式$\frac{x-m}{g(x)}>\sqrt{x}$成立,求實(shí)數(shù)m的取值范圍;
(3)若x1,x2∈($\frac{1}{e}$,1),x1+x2<1,求證:x1x2<(x1+x24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合U={0,1,2,3,4,5},M={1,4,5},N={0,3,5},則M∩(∁UN)=( 。
A.{1}B.{1,4}C.{1,4,5}D.{1,2,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≤0\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,若z=3x+y,則z的最小值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列關(guān)于命題的說法中正確的個數(shù)有( 。
①對于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R均有x2+x+1<0
②“x=1”是“x2-3x+2=0”的充分不必要條件
③命題“若x2-3x+2=0,則x=1”的逆否命題是“若x≠1,則x2-3x+2≠0”
④若p∧q為假命題,則p,q均為假命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在底面為梯形的四棱錐S-ABCD中,已知AD∥BC,∠ASC=60°,AD=DC=$\sqrt{2}$,SA=SC=SD=2.
(1)求證:AC⊥SD;
(2)求點(diǎn)B到平面SAD的距離.

查看答案和解析>>

同步練習(xí)冊答案