在三棱錐P-ABC中,O為AC中點(diǎn),PA=PB=PC=AC=2,AB=BC=
2

(1)求證:BO⊥平面PAC;
(2)求AB與PC所成角余弦值.
考點(diǎn):直線與平面所成的角,直線與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(1)由已知得PO⊥AC,BO⊥AC,從而BO⊥AC,由勾股定理得PO⊥BO,由此能證明BO⊥平面PAC.
(2)以O(shè)為原點(diǎn),OA為x軸,OB為y軸,OP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出AB與PC所成角余弦值.
解答: (1)證明:∵在三棱錐P-ABC中,O為AC中點(diǎn),PA=PB=PC=AC=2,AB=BC=
2
,
∴PO⊥AC,BO⊥AC,
∴AC⊥平面PBO,∴BO⊥AC,
∴BO=
2-1
=1
,PO=
4-1
=
3
,
∴PO2+BO2=PB2,∴PO⊥BO,
∴BO⊥平面PAC.
(2)解:以O(shè)為原點(diǎn),OA為x軸,OB為y軸,OP為z軸,建立空間直角坐標(biāo)系,
A(1,0,0),B(0,1,0),P(0,0,
3
),C(0,-1,0),
AB
=(-1,1,0),
PC
=(0,-1,-
3
),
∴|cos<
AB
,
PC
>|=|
-1
2
×2
|=
2
4

∴AB與PC所成角余弦值為
2
4
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查異面直線所成角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若存在x∈(0,1),使x-a>log0.5x成立,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,+∞)
B、(-∞,-1)
C、(-∞,1)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=-
1
8
x2的焦點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2-ax+a2-7=0的兩個(gè)根一個(gè)大于2,另一個(gè)小于2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)在函數(shù)y=x2的圖象上,數(shù)列{bn}滿足bn=6n-1+2n+1(n≥2,n∈N*),且b1=a1+3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:數(shù)列{
bn
2n
+1}是等比數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{cn}滿足對任意n∈N*,均有an+1=
c1
b1+2
+
c2
b2+22
+
c3
b2+23
+…+
cn
bn+2n
成立,求c1+c2+c3+…+c2010的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,AB=AD,CB=CD,E為BD的中點(diǎn).求證:BD⊥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(a-ax),且a>1.
(1)求函數(shù)f(x)的定義域;
(2)判斷并證明f(x)在其定義域上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為原點(diǎn),焦點(diǎn)在x軸上,過它的右焦點(diǎn)引傾斜角為
π
4
的直線l交橢圓于P,Q兩點(diǎn),P,Q,到橢圓的右準(zhǔn)線的距離之和為
8
3
,它的左焦點(diǎn)到l的距離為
2
,它的左焦點(diǎn)到l的距離為
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b∈R,ab≠0則在(1)
a2+b2
2
≥ab,(2)
b
a
+
a
b
≥2,(3)ab≤(
a+b
2
2,(4)(
a+b
2
2
a2+b2
2
這四個(gè)不等式中,恒成立的是
 
(填序號(hào))

查看答案和解析>>

同步練習(xí)冊答案