已知:ABCD是矩形,SA⊥平面ABCD,E是SC上一點.

求證:BE不可能垂直于平面SCD.

答案:
解析:

  解析:用到反證法,假設(shè)BE⊥平面SCD,

  

  ∵AB∥CD;∴AB⊥BE.

  

  ∴AB⊥SB,這與Rt△SAB中∠SBA為銳角矛盾.

  ∴BE不可能垂直于平面SCD


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

17、如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M,N分別是AB,PC的中點.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:ABCD是矩形,AB=1,BC=2,PD⊥平面ABCD,且PD=3.
(1)求四棱錐P-ABCD的體積;
(2)求直線PB與平面ABCD所成角的大。
(3)求異面直線PB與AC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是矩形,AB=2,AD=3,E是線段BC上的動點,F(xiàn)是CD的中點.若∠AEF為鈍角,則線段BE長度的取值范圍是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD是矩形,AD⊥平面ABE,AD=AE,點F在線段DE上,且AF⊥平面BDE.求證:
(1)BE⊥平面ADE;
(2)BE∥平面AFC;
(3)平面AFC⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)如圖,已知四邊形 ABCD 是矩形,AB=2BC=2,三角形 PAB 是正三角形,且 平面 ABCD⊥平面 PCD.
(1)若 O 是 CD 的中點,證明:BO⊥PA;
(2)求二面角 B-PA-D 的余弦值.

查看答案和解析>>

同步練習(xí)冊答案