【題目】國(guó)家放開(kāi)計(jì)劃生育政策,鼓勵(lì)一對(duì)夫婦生育2個(gè)孩子.在某地區(qū)的100000對(duì)已經(jīng)生育了一胎夫婦中,進(jìn)行大數(shù)據(jù)統(tǒng)計(jì)得,有100對(duì)第一胎生育的是雙胞胎或多胞胎,其余的均為單胞胎.在這99900對(duì)恰好生育一孩的夫婦中,男方、女方都愿意生育二孩的有50000對(duì),男方愿意生育二孩女方不愿意生育二孩的有對(duì),男方不愿意生育二孩女方愿意生育二孩的有對(duì),其余情形有對(duì),且.現(xiàn)用樣本的頻率來(lái)估計(jì)總體的概率.

(1)說(shuō)明“其余情形”指何種具體情形,并求出,,的值;

(2)該地區(qū)為進(jìn)一步鼓勵(lì)生育二孩,實(shí)行貼補(bǔ)政策:凡第一胎生育了一孩的夫婦一次性貼補(bǔ)5000元,第一胎生育了雙胞胎或多胞胎的夫婦只有一次性貼補(bǔ)15000元.第一胎已經(jīng)生育了一孩再生育了二孩的夫婦一次性再貼補(bǔ)20000元.這種補(bǔ)貼政策直接提高了夫婦生育二孩的積極性:原先男方或女方中只有一方愿意生育二孩的夫婦現(xiàn)在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫婦仍然不愿意生育二孩.設(shè)為該地區(qū)的一對(duì)夫婦享受的生育貼補(bǔ),求

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

(1)根據(jù)題意中的分類(lèi)的特點(diǎn)可得“其余情形”的含義,然后利用,可設(shè),由題意求得后進(jìn)而可得所求.(2)由題意得到原先的5種生育情況的頻率,由題意可知隨機(jī)變量的可能取值為15000,25000,5000,然后求出的每一個(gè)取值的概率,從而得到的分布列,最后可求得期望

(1)“其余情形”指一對(duì)夫婦中的男方、女方都不愿意生育二孩.

,可設(shè),

由已知得,

所以,

解得

所以,,

(2)一對(duì)夫婦中,原先的生育情況有以下5種:

第一胎生育的是雙胞胎或多胞胎有100對(duì),頻率為,

男方、女方都愿意生育二孩的有50000對(duì),頻率為,

男方愿意生育二胎女方不愿意生育二胎的有30000對(duì),頻率為,

男方不愿意生育二胎女方愿意生育二胎的也有10000對(duì),頻率為,

其余情形即男方、女方都不愿意生育二孩的有9900對(duì),頻率為,

由題意可知隨機(jī)變量的可能取值為15000,25000,5000,

,

,

,

所以隨機(jī)變量的概率分布表如下:

15000

25000

5000

所以(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)若曲線參數(shù)方程為:為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線參數(shù)方程為:為參數(shù)),,且曲線與曲線交點(diǎn)分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,銳角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為軸的正半軸,終邊與單位圓的交點(diǎn)分別為.已知點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,MN分別是BC,BB1A1D的中點(diǎn).

1)證明:MN∥平面C1DE;

2)求二面角A-MA1-N的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高

氣溫

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.

(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量n(單位:瓶)為多少時(shí),Y的數(shù)學(xué)期望達(dá)到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足。

(1)求證:A,B,C三點(diǎn)共線;

(2)若A(1,cosx),B1+sinx,cosx),且x∈[0, ],函數(shù)f(x)=2m+||+m2的最小值為5,求實(shí)數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在幾何體ABCDE中,AB⊥平面BCE,且BCE是正三角形,四邊形ABCD為正方形,F是線段CD上的中點(diǎn),G是線段BE的中點(diǎn),且AB=2

1)求證:GF∥平面ADE;

2)求三棱錐FBGC的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象上存在關(guān)于軸對(duì)稱(chēng)的點(diǎn),則的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案