已知函數(shù)f(x)的圖象如圖,則f(x)=
 

考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:由題意,A=3,T=2(
π
3
+
π
6
)=π,可得ω=2,將(
π
12
,3)代入可得sin(
π
6
+φ)=1,可得φ=
π
3
,即可求出f(x).
解答: 解:由題意,A=3,T=2(
π
3
+
π
6
)=π,∴ω=2,
∴f(x)=3sin(2x+φ),
將(
π
12
,3)代入可得sin(
π
6
+φ)=1,
∴φ=
π
3
,
∴f(x)=3sin(2x+
π
3
),
故答案為:f(x)=3sin(2x+
π
3
).
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,求得ω、φ的值是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=|x|,x∈R},B={y|y=1-2x-x2},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)y=xm2+m+1(m∈Z)的定義域是
 
,奇偶性是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(6,1)B(1,3)C(3,1),求向量
AB
在向量
BC
上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+3x+1.
(Ⅰ)當(dāng)a=5時(shí),求曲線y=f(x)在點(diǎn)(2,f(2)處的切線方程;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若f(x)在區(qū)間(2,3)內(nèi)至少有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖1是某高三學(xué)生進(jìn)入高中三年來的數(shù)學(xué)考試成績(jī)莖葉圖,第1次到12次的考試成績(jī)依次記為A1,A2,…,A12.圖2是統(tǒng)計(jì)莖葉圖中成績(jī)?cè)谝欢ǚ秶鷥?nèi)考試次數(shù)的一個(gè)算法流程圖.那么算法流程圖輸出的結(jié)果是( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
3x+1
的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-alnx.
(1)若a=1,求該函數(shù)在定義域內(nèi)的最小值;
(2)若函數(shù)f(x)在區(qū)間[1,2]內(nèi)時(shí),f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+lnx,則它在點(diǎn)(1,1)處的切線方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案