19.已知(1+3x)n的展開式中含有x2的系數(shù)是54,則n=4.

分析 利用通項公式即可得出.

解答 解:(1+3x)n的展開式中通項公式:Tr+1=${∁}_{n}^{r}$(3x)r=3r${∁}_{n}^{r}$xr
∵含有x2的系數(shù)是54,∴r=2.
∴${3}^{2}{∁}_{n}^{2}$=54,可得${∁}_{n}^{2}$=6,∴$\frac{n(n-1)}{2}$=6,n∈N*
解得n=4.
故答案為:4.

點評 本題考查了二項式定理的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線被圓(x-2)2+y2=4所截得的弦長為2,則C的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=(  )
A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知△ABC是邊長為2的等邊三角形,P為平面ABC內(nèi)一點,則$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最小值是( 。
A.-2B.-$\frac{3}{2}$C.-$\frac{4}{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。
A.0,0B.1,1C.0,1D.1,0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(Ⅰ)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.閱讀右面的程序框圖,運行相應(yīng)的程序,若輸入N的值為24,則輸出N的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)a∈Z,已知定義在R上的函數(shù)f(x)=2x4+3x3-3x2-6x+a在區(qū)間(1,2)內(nèi)有一個零點x0,g(x)為f(x)的導函數(shù).
(Ⅰ)求g(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m∈[1,x0)∪(x0,2],函數(shù)h(x)=g(x)(m-x0)-f(m),求證:h(m)h(x0)<0;
(Ⅲ)求證:存在大于0的常數(shù)A,使得對于任意的正整數(shù)p,q,且$\frac{p}{q}$∈[1,x0)∪(x0,2],滿足|$\frac{p}{q}$-x0|≥$\frac{1}{A{q}^{4}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.某公司的組織結(jié)構(gòu)圖如圖所示,則開發(fā)部的直接領(lǐng)導是總經(jīng)理.

查看答案和解析>>

同步練習冊答案