4.如圖,四棱錐P-ABCD中,∠ABC=∠BAD=90°,△PAB,△PAD,都是邊長(zhǎng)為2的等邊三角形.
(Ⅰ)證明:平面PDB⊥平面ABCD;
(Ⅱ)求點(diǎn)C到平面PAD的距離.

分析 (1)過(guò)P作PO⊥平面ABCD,垂足為O,證明O是BD的中點(diǎn),即可證明平面PDB⊥平面ABCD;
(Ⅱ)利用等體積方法求點(diǎn)C到平面PAD的距離.

解答 (I)證明:過(guò)P作PO⊥平面ABCD,垂足為O,

由△PAB和△PAD都是等邊三角形知PA=PB=PD
∴OA=OB=OD,即O為直角三角形ABD的外心
∴O是BD的中點(diǎn),
∴PO?平面PDB,
∵PO⊥平面ABCD,
∴平面PDB⊥平面ABCD;
(Ⅱ)解:由(I)可知DO=$\sqrt{2}$,PO=$\sqrt{4-2}$=$\sqrt{2}$,
設(shè)點(diǎn)C到平面PAD的距離為h,則$\frac{1}{3}×\frac{\sqrt{3}}{4}×{2}^{2}h=\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{2}$,
∴h=$\frac{2\sqrt{6}}{3}$,
∴點(diǎn)C到平面PAD的距離為$\frac{2\sqrt{6}}{3}$.

點(diǎn)評(píng) 本題考查平面與平面垂直,考查點(diǎn)到面的距離的計(jì)算,考查學(xué)生轉(zhuǎn)化的能力,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x-(a-1)lnx+$\frac{a}{x}$(a∈R).
(1)討論f(x)的單調(diào)性;
(2)若f(x)在[1,e]上存在點(diǎn)x0,使得f(x0)≤0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在三棱柱ABC-A1B1C1中,矩形ABB1A1的對(duì)角線相交于點(diǎn)G,且側(cè)面ABB1A1⊥平面ABC,AC=CB=BB1=2,F(xiàn)為CB1上的點(diǎn),且BF⊥平面AB1C.
(1)求證:AC⊥平面BB1C1C;
(2)求二面角A1-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知f(x)=$\frac{x+1}{{e}^{x}}$(e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的極大值;
(Ⅱ)令h(x)=a+2f′(x)(a∈R),若h(x)有兩個(gè)零點(diǎn),x1,x2(x1<x2),求a的取值范圍;
(Ⅲ)設(shè)F(x)=aex-x2,在(Ⅱ)的條件下,試證明0<F(x1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為3,E為CD的中點(diǎn),則點(diǎn)D1到平面AEC1的距離為( 。
A.$\sqrt{6}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知在Rt△ABC中,∠C=90°,點(diǎn)P在平面ABC外,且PA=PB=PC,PO⊥平面ABC于點(diǎn)P,則O是(  )
A.AC邊的中點(diǎn)B.BC邊的中點(diǎn)C.AB邊的中點(diǎn)D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)在直三棱錐ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,E,F(xiàn)依次為CC1,BC的中點(diǎn).
(1)求異面直線A1B與EF所成角θ的大;
(2)求直線EF與平面ABC所成角大;
(3)求點(diǎn)C到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4.
(I)已知點(diǎn)A的極坐標(biāo)為(5,π),求過(guò)點(diǎn)A且與曲線C相切的直線的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)B的極坐標(biāo)為(3,0),過(guò)點(diǎn)B的直線與曲線C交于M、N兩點(diǎn),當(dāng)△OMN的面積最大時(shí),求直線MN的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,設(shè)圓O1與O2的半徑分別為3和2,O1O2=4,A,B為兩圓的交點(diǎn),試求兩圓的公共弦AB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案