(2011•黃岡模擬)已知拋物線y2=2px(p>0),Rt△ABC的三個頂點都在拋物線上,且斜邊AB∥y軸,則斜邊上的高為( 。
分析:結(jié)合拋物線的方程與性質(zhì)設出A,B,C的坐標,即可表達出斜邊上的高|CD|,再由直角三角形的性質(zhì)得到斜邊上中線的長度,然后利用兩點之間的距離公式表達出中線的長度,即可得到一個等式,進而求出斜邊上的高得到答案.
解答:解:由題意,斜邊平行y軸,即垂直對稱軸x軸,
可設C的坐標為(
c2
2p
,c),B的坐標為(
b2
2p
,b),則A的坐標為(
b2
2p
,-b);
AC
=(
c2
2p
-
b2
2p
,c-b),
CB
=(
b2
2p
-
c2
2p
,-b-c)
又由Rt△ABC的斜邊為AB,則有AC⊥CB,
AC
CB
=0,
變形可得|b2-c2|=4p2,
而斜邊上的高即C到AB的距離為|
b2
2p
-
c2
2p
|=
4p2
2p
=2p;
故選B.
點評:本題的考點是拋物線的應用,主要考查直線與圓錐曲線的綜合問題,考查拋物線的標準方程等基礎知識,考查運算求解能力、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)已知:如圖|
OA
|=|
OB
|=1,
OA
OB
的夾角為120°,
OC
OA
的夾角為30°,若
OC
OA
OB
(λ,μ∈R)則
λ
μ
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(
an
an+1)(n∈N*)
在函數(shù)y=x2+1的圖象上.數(shù)列{bn}滿足b1=0,bn+1=bn+3an(n∈N*).
(I)求數(shù)列{an},{bn}的通項公式;
(II)若cn=anbncosnπ(n∈N*),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)在△ABC所在的平面內(nèi)有一點P,如果
PA
+
PB
+
PC
=
AB
,那么△PAB的面積與△ABC的面積之比是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)在△ABC中,C=60°,AB=
3
,BC=
2
,那么A等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)分形幾何學是美籍法國數(shù)學家伯努瓦••B•曼德爾布羅特(Benoit B.Mandelbrot) 在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路.下圖按照的分形規(guī)律生長成一個樹形圖,則第10行的空心圓點的個數(shù)是(  )

查看答案和解析>>

同步練習冊答案