7.同時(shí)拋擲兩個(gè)骰子(各個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6),計(jì)算:
(1)向上的數(shù)相同的概率.
(2)向上的數(shù)之積為偶數(shù)的概率.

分析 (1)每擲1個(gè)骰子都有6種情況,所以同時(shí)擲兩個(gè)骰子總的結(jié)果數(shù)為6×6=36.向上的數(shù)相同的結(jié)果有6種,由此能求出向上的數(shù)相同的概率.
(2)向上的數(shù)之積為偶數(shù)的情況比較多,可以先考慮其對(duì)立事件,即向上的數(shù)之積為奇數(shù).利用列舉法求出向上的數(shù)之積為奇數(shù)的基本事件個(gè)數(shù),由此利用對(duì)立事件概率計(jì)算公式能求出向上的數(shù)之積為偶數(shù)的概率.

解答 解:(1)每擲1個(gè)骰子都有6種情況,所以同時(shí)擲兩個(gè)骰子總的結(jié)果數(shù)為6×6=36.
向上的數(shù)相同的結(jié)果有6種,故向上的數(shù)相同的概率為P(A)=$\frac{6}{36}$=$\frac{1}{6}$.
(2)向上的數(shù)之積為偶數(shù)的情況比較多,可以先考慮其對(duì)立事件,即向上的數(shù)之積為奇數(shù).
向上的數(shù)之積為奇數(shù)的基本事件有:
(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9個(gè),
故向上的數(shù)之積為偶數(shù)的概率為P(B)=1-$\frac{9}{36}$=1-$\frac{1}{4}$=$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知O是△ABC中的一點(diǎn),$\overrightarrow{OA}$+3$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow 0$,則△OAB與△OAC的面積之比為(  )
A.1:3B.1C.5:3D.3:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD的底面ABCD是菱形,∠ADC=60°,PA=PC,PD⊥PB,AC∩BD=E,二面角P-AC-B的大小為60°.
(1)證明:AC⊥PB;
(2)求二面角E-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)當(dāng)$a=-\frac{1}{4}$時(shí),求函數(shù)y=f(x)的單調(diào)減區(qū)間;
(Ⅱ)$a=\frac{1}{2}$時(shí),令$h(x)=f(x)-3lnx+x-\frac{1}{2}$.求h(x)在[1,e]上的最大值和最小值;
(Ⅲ)若a≤0時(shí),求證:函數(shù)f(x)≤x-1在x∈[1,+∞)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2$\sqrt{2}$.
(1)求證:CD⊥平面PAC;
(2)如果N是棱AB上一點(diǎn),且三棱錐N-BMC的體積為$\frac{1}{3}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=x3+3x對(duì)任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,則x∈(-2,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,設(shè)所給的方向?yàn)槲矬w的正前方,試畫出它的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=log3($\sqrt{{x}^{2}+1}$-x)+(a+3)x+19,f(10)=8,則f(-10)的值為( 。
A.10B.19C.20D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.三次函數(shù)$f(x)=a{x^3}-\frac{3}{2}{x^2}+2x+1$的圖象在點(diǎn)(1,f(1))處的切線與x軸平行,則f(x)在區(qū)間(1,3)上的最小值是( 。
A.$\frac{8}{3}$B.$\frac{11}{6}$C.$\frac{11}{3}$D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案