設(shè)x,y,z∈R,且滿足x
2+y
2+z
2=5,則x+2y+3z之最大值為
.
考點:二維形式的柯西不等式
專題:不等式的解法及應(yīng)用
分析:由條件利用柯西不等式可得 14(x2+y2+z2)≥(x+2y+3z)2,由此求得x+2y+3z之最大值.
解答:
解:∵x
2+y
2+z
2=5,1
2+2
2+3
2=14,利用柯西不等式可得 14(x
2+y
2+z
2)≥(x+2y+3z)
2,
即14×5)≥(x+2y+3z)
2,∴x+2y+3z≤
,當(dāng)且僅當(dāng)
=
=
時,取等號,
故x+2y+3z之最大值為
,
故答案為:
.
點評:本題主要考查柯西不等式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知
=(
sinx,m+cosx),
=(cosx,-m+cosx),且f(x)=
•
(1)求函數(shù)f(x)的最小正周期
(2)當(dāng)
x∈[-,]時,f(x)的最小值是-4,求此時m的值和函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=sinxcosx-
cos(π+x)cosx(x∈R).則f(x)的最大值=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若關(guān)于x的不等式sin
2x-(a+1)sinx+1≥0對一切x∈[0,
]恒成立,則a∈
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知平面直角坐標(biāo)系xoy上的區(qū)域D由不等式組
給定,若M(x,y)為D上的動點,則
的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知命題p:“?x∈[1,2],x
2-a≥0“,命題q:“?x
0∈R,x
02+2ax
0+2=0“,若命題“p且q“是真命題,則實數(shù)a的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,矩形ABCD內(nèi)的陰影部分是由曲線f(x)=2x
2-2x及直線y=2x圍成的,現(xiàn)向矩形ABCD內(nèi)隨機投擲一點,則該點落在陰影部分的概率為
.
查看答案和解析>>