4.已知集合A=x|x2-2x-3>0},集合B={x|0<x<4},則(∁RA)∩B=( 。
A.(0,3]B.[-1,0)C.[-1,3]D.(3,4)

分析 化簡集合A,根據(jù)補集與交集的定義進行計算即可.

解答 解:集合A=x|x2-2x-3>0}={x|x<-1或x>3},
集合B={x|0<x<4},
∴∁RA={x|-1≤x≤3},
∴(∁RA)∩B={x|0<x≤3}=(0,3].
故選:A.

點評 本題考查了集合的定義與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.在一次連環(huán)交通事故中,只有一個人需要負主要責任,但在警察詢問時,甲說:“主要責任在乙”;乙說:“丙應負主要責任”;丙說“甲說的對”;丁說:“反正我沒有責任”.四人中只有一個人說的是真話,則該事故中需要負主要責任的人是甲.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知在△ABC內有一點P,滿足$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,過點P作直線l分別交AB、AC于M、N,若$\overrightarrow{AM}$=m$\overrightarrow{AB}$,$\overrightarrow{AN}$=n$\overrightarrow{AC}$(m>0,n>0),則m+n的最小值為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓$\frac{x^2}{48}$+$\frac{y^2}{36}$=1,F(xiàn)1,F(xiàn)2是左、右焦點,點A是橢圓上的一點,I是三角形F1AF2內切圓的圓心.
(I)若∠F1AF2=60°,求三角形F1AF2的面積;
(II)直線AI交x軸于D點,求$\frac{AI}{ID}$;
( III)當點A在橢圓上頂點時,圓I和圓G關于直線y=1對稱,圓G與x軸的正半軸交于點H,以H為圓心的圓H:(x-2)2+y2=r2(r>0)與圓G交于B,C兩點.設P是圓G上異于B,C的任意一點,直線PB、PC分別與x軸交于點M和N,求$\overrightarrow{GM}$•$\overrightarrow{GN}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設集合A={x|x2-3x-10≤0},B={x|m-1≤x≤2m+1}.
(1)當x∈Z時,求A的非空真子集的個數(shù);
(2)若A?B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)當a<0時,討論f(x)的單調性;
(2)若對任意的a∈(-3,-2),x1,x2∈[1,3]恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知拋物線x2=2py(p>0),定點C(0,p),點N是點C關于坐標原點O的對稱點,過定點C(0,p)的直線l交拋物線x2=2py(p>0)于A,B兩點,設N到直線l是距離為d,則|AB|•d的最小值為$4\sqrt{2}{p}^{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.滿足集合{a}?P⊆{a,b,c}的集合P的數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.眾所周知,乒乓球是中國的國球,乒乓球隊內部也有著很嚴格的競爭機制,為了參加國際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進行一場內部對抗賽,按以往多次比賽的統(tǒng)計,甲獲勝的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,且各場比賽互不影響.
(1)若甲至少獲勝兩場的概率大于$\frac{7}{10}$,則甲入選參加國際大賽參賽名單,否則不予入選,問甲是否會入選最終的大名單?
(2)求甲獲勝場次X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案