【題目】如圖,已知DP⊥y軸,點(diǎn)D為垂足,點(diǎn)M在線段DP的延長(zhǎng)線上,且滿足|DP|=|PM|,當(dāng)點(diǎn)P在圓x2+y2=3上運(yùn)動(dòng)時(shí)
(1)求點(diǎn)M的軌跡C的方程;
(2)直線l:x=my+3(m≠0)交曲線C于A、B兩點(diǎn),設(shè)點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為B1(點(diǎn)B1與點(diǎn)A不重合),且直線B1A與x軸交于點(diǎn)E. ①證明:點(diǎn)E是定點(diǎn);
②△EAB的面積是否存在最大值?若存在,求出最大值,若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:設(shè)M(x,y),則P( x,y),代入x2+y2=3,可得 x2+y2=3,即
(2)①證明:設(shè)A(x1,y1),B(x2,y2),則直線與橢圓C方程聯(lián)立,
化簡(jiǎn)并整理得(m2+4)y2+6my﹣3=0,
∴y1+y2=﹣ ,y1y2=﹣ ,
由題設(shè)知B1(x2,﹣y2),∴直線AB1的方程為y﹣y1= (x﹣x1),
令y=0得x= =4,
∴點(diǎn)E(4,0)…(7分)
②△EAB的面積S= |PF||y1﹣y2|=2 =2 ≤1
當(dāng)且僅當(dāng) ,即m= 時(shí)等號(hào)成立,
∴△PMN的面積存在最大值,最大值為1
【解析】(1)利用代入法,即可求點(diǎn)M的軌跡C的方程;(2)①由題意,設(shè)A(x1 , y1),B(x2 , y2),可得直線AB1的方程,令y=0,可得點(diǎn)E的坐標(biāo)為(4,0). ②利用△EAB的面積為S= |PF||y1﹣y2|=2 ,化簡(jiǎn),利用基本不等式的性質(zhì)即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.直線l的參數(shù)方程是 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρ= sin( ).
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于M、N兩點(diǎn),求M、N兩點(diǎn)間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某三棱錐的正視圖、側(cè)視圖和俯視圖分別是直角三角形、等腰三角形和等邊三角形,若該三棱錐的頂點(diǎn)都在同一球面上,則該球的表面積為( )
A.27π
B.48π
C.64π
D.81π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若F(x+1)>b對(duì)任意x∈(0,+∞)恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣t有三個(gè)不同的零點(diǎn)x1 , x2 , x3 , 且x1<x2<x3 , 則﹣ + + 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙十一期間某電商準(zhǔn)備矩形促銷(xiāo)市場(chǎng)調(diào)查,該電商決定活動(dòng),市場(chǎng)調(diào)查,該電商決定從2種服裝商品,2種家電商品,3種日用商品中,選出3種商品進(jìn)行促銷(xiāo)活動(dòng).
(1)試求選出的3種商品中至多有一種是家電商品的概率;
(2)電商對(duì)選出的某商品采用促銷(xiāo)方案是有獎(jiǎng)銷(xiāo)售,顧客購(gòu)買(mǎi)該商品,一共有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次都活動(dòng)數(shù)額為40元的獎(jiǎng)券,假設(shè)顧客每次抽獎(jiǎng)時(shí)中獎(jiǎng)的概率都是 ,且每次中獎(jiǎng)互不影響,設(shè)一位顧客中獎(jiǎng)金額為隨機(jī)變量ξ,求ξ的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長(zhǎng)度大于1米,且AC比AB長(zhǎng)0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為( )
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△AnBnCn的三邊長(zhǎng)分別為an , bn , cn , n=1,2,3…,若b1>c1 , b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,則∠An的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某重點(diǎn)中學(xué)為了解高一年級(jí)學(xué)生身體發(fā)育情況,對(duì)全校700名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高(單位:cm)頻數(shù)分布表如表1、表2. 表1:男生身高頻數(shù)分布表
身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
頻數(shù) | 2 | 5 | 14 | 13 | 4 | 2 |
表2:女生身高頻數(shù)分布表
身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
頻數(shù) | 1 | 7 | 12 | 6 | 3 | 1 |
(1)求該校高一女生的人數(shù);
(2)估計(jì)該校學(xué)生身高在[165,180)的概率;
(3)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出1人,設(shè)X表示身高在[165,180)學(xué)生的人數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com