16.共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ) 求圖中x的值;
(Ⅱ) 已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機(jī)抽取2人進(jìn)行座談,求所抽取的兩人中至少有一名女生的概率.

分析 (I)利用頻率分布直方圖的性質(zhì)即可得出.
(II)根據(jù)分層抽樣,求出女生和男生得人數(shù),再一一列舉出所有得基本事件,找到所抽取的2人中至少有1名女生的基本事件,根據(jù)概率公式計算即可.

解答 解:(Ⅰ)由(0.008+0.021+0.035+0.030+x)×10=1,解得x=0.006.(4分)
(Ⅱ)滿意度評分值在[90,100]內(nèi)有100×0.006×10=6人,
其中女生2人,男生4人.(5分)
設(shè)其中女生為a1,a2,男生為b1,b2,b3,b4,從中任取兩人,所有的基本事件為(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4)共15個,
至少有1人年齡在[20,30)內(nèi)的有(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4)共9個.
所以,抽取的兩人中至少有一名女生的概率為$\frac{9}{15}$,即為$\frac{3}{5}$.(12分)

點(diǎn)評 本題考查分層抽樣,以及古典概型的概率公式,考查數(shù)據(jù)處理能力和分析問題、解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,在△ABC中,角A,B,C的對邊分別為a,b,c,C=$\frac{π}{2}$,D,E分別為BC,AB上的點(diǎn),∠ADC=∠EDB=$\frac{π}{4}$,DB=$\sqrt{2}$,AE=3EB,則邊長AC的值為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a=($\frac{1}{2}$)10,b=($\frac{1}{5}$)${\;}^{-\frac{1}{2}}$,c=log${\;}_{\frac{1}{3}}$10,則a,b.c大小關(guān)系為( 。
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:

女性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2040805010
男性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)4575906030
(Ⅰ)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大。ú挥嬎憔唧w值,給出結(jié)論即可);
(Ⅱ)根據(jù)評分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對于兩條不同的直線m,n和兩個不同的平面α,β,以下結(jié)論正確的是( 。
A.若m?α,n∥β,m,n是異面直線,則α,β相交
B.若m⊥α,m⊥β,n∥α,則n∥β
C.若m?α,n∥α,m,n共面于β,則m∥n
D.若m⊥α,n⊥β,α,β不平行,則m,n為異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其中正視圖是半徑為1的半圓,則該幾何體的表面積是( 。
A.$\frac{{(\sqrt{5}-1)π}}{2}+2$B.$\frac{{(\sqrt{5}+1)π}}{2}+2$C.$\frac{π}{2}+3$D.$\frac{{\sqrt{5}}}{2}π+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\left\{\begin{array}{l}lnx({x>0})\\-\sqrt{-x}({x≤0})\end{array}$與g(x)=|x+a|+1的圖象上存在關(guān)于y軸對稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.RB.(-∞,-e]C.[e,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期為π,其圖象關(guān)于直線x=$\frac{π}{3}$對稱,則|φ|的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù):①f(x)=2sin(2x+$\frac{π}{3}$);②f(x)=2sin(2x-$\frac{π}{6}$);③f(x)=2sin($\frac{1}{2}$x+$\frac{π}{3}$);④f(x)=2sin(2x-$\frac{π}{3}$),其中,最小正周期為π且圖象關(guān)于直線x=$\frac{π}{3}$對稱的函數(shù)序號是②.

查看答案和解析>>

同步練習(xí)冊答案