已知點(diǎn)F(1,0),直線l:x=-1,點(diǎn)P在直線l上運(yùn)動(dòng),PQ⊥l,線段PF與y軸的交點(diǎn)為R,且
RQ
FP
=0.
(1)求動(dòng)點(diǎn)Q的軌跡C的方程
(2)直線l與x軸交于點(diǎn)M,過F的直線l1交軌跡C于A,B兩點(diǎn),試探究點(diǎn)M與以AB為直徑的圓的位置關(guān)系,并加以說明.
考點(diǎn):軌跡方程,直線與圓的位置關(guān)系
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由已知條件知,點(diǎn)R是線段FP的中點(diǎn),RQ是線段FP的垂直平分線,點(diǎn)Q的軌跡E是以F為焦點(diǎn),l為準(zhǔn)線的拋物線,寫出拋物線標(biāo)準(zhǔn)方程.
(2)分類討論,求出|MN|與半徑,即可得出結(jié)論.
解答: 解:(1)依題意知,直線l的方程為:x=-1,設(shè)直線l與x軸交于點(diǎn)K(-1,0),由OK平行于直線l可得,
OR是△FPK的中位線,故點(diǎn)R是線段FP的中點(diǎn).
又RQ⊥FP,∴RQ是線段FP的垂直平分線.∴|PQ|是點(diǎn)Q到直線l的距離.
∵點(diǎn)Q在線段FP的垂直平分線,∴|PQ|=|QF|.
故動(dòng)點(diǎn)Q的軌跡E是以F為焦點(diǎn),l為準(zhǔn)線的拋物線,其方程為:y2=4x.
(2)①AB⊥x軸時(shí),以AB為直徑的圓的方程為(x-1)2+y2=4,M(-1,0)在圓上;
②AB斜率存在時(shí),設(shè)方程為y=k(x-1),A(x1,y1),B(x2,y2),
直線代入拋物線可得k2x2-(4+2k2)x+k2=0,
∴x1+x2=2+
4
k2
,x1x2=1,
圓的直徑|AB|=x1+x2+p=4+
4
k2
,AB中點(diǎn)(1+
2
k2
,
2
k
),
∴|MN|=
(1+
2
k2
+1)2+
4
k2
4+
8
k2
+
4
k4
=2+
2
k2
=
1
2
|AB|,
∴M(-1,0)在圓外.
點(diǎn)評(píng):本題考查軌跡方程的求法、拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中正視圖是等邊三角形,俯視圖是半圓.現(xiàn)有一只螞蟻從點(diǎn)A出發(fā)沿該幾何體的側(cè)面環(huán)繞一周回到A點(diǎn),則螞蟻所經(jīng)過路程的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),且焦點(diǎn)在y軸上.若拋物線上的點(diǎn)M(m,-3)到焦點(diǎn)的距離是5,則拋物線的準(zhǔn)線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個(gè)廣告氣球被一束入射角為30°的平行光線照射,其投影是一個(gè)最長(zhǎng)的弦長(zhǎng)為5米的橢圓,則制作這個(gè)廣告氣球至少需要的面料是
 
m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)P(2,3),根據(jù)下列條件分別求出直線l的方程:
(1)l在x軸、y軸上的截距之和等于0;
(2)l與兩條坐標(biāo)軸在第一象限所圍城的三角形面積為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
y≤x
y≥0
x≤1
表示的平面區(qū)域?yàn)镸,不等式y(tǒng)≥x2表示的平面區(qū)域?yàn)镹,現(xiàn)隨機(jī)向區(qū)域M內(nèi)投擲一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為( 。
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市有M,N,S三所高校,其學(xué)生會(huì)學(xué)習(xí)部有“干事”人數(shù)分別為36,24,12,現(xiàn)采用分層抽樣的方法從這些“干事”中抽取6名進(jìn)行“大學(xué)生學(xué)習(xí)部活動(dòng)現(xiàn)狀”調(diào)查.
(Ⅰ)求應(yīng)從M,N,S這三所高校中分別抽取的“干事”人數(shù);
(Ⅱ)若從抽取的6名干事中隨機(jī)選2,求選出的2名干事來自同一所高校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

福彩中心發(fā)行彩票的目的是為了獲取資金資助福利事業(yè),現(xiàn)在福彩中心準(zhǔn)備發(fā)行一種面值為5元的福利彩票刮刮卡,設(shè)計(jì)方案如下:①該福利彩票中獎(jiǎng)率為50%;②每張中獎(jiǎng)彩票的中獎(jiǎng)獎(jiǎng)金有5元,50元和150元三種;③顧客購買一張彩票獲得150元獎(jiǎng)金的概率為p,獲得50元獎(jiǎng)金的概率為2%.
(1)假設(shè)某顧客一次性花50元購買10張彩票,求該顧客中獎(jiǎng)的概率;
(2)設(shè)福彩中心賣出一張彩票獲得的資金為X元,求X的概率分布(用p表示);
(3)為了能夠籌得資金資助福利事業(yè),求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)圖象的相鄰兩對(duì)稱軸間的距離為
π
2
,若將函數(shù)f(x)的圖象向左平移
π
6
個(gè)單位后圖象關(guān)于y軸對(duì)稱.
(Ⅰ)求使f(x)≥
1
2
成立的x的取值范圍;
(Ⅱ)設(shè)g(x)=-
1
2
g′(
π
6
)sinωx+
3
cosωx,其中g(shù)′(x)是g(x)的導(dǎo)函數(shù),若g(x)=
2
7
,且
π
12
<x<
π
3
,求cos2x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案