A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
分析 對a分類討論:a=0時,直接驗證即可判斷出結(jié)論.a(chǎn)≠0時,不等式2ax2+ax+1>0恒成立”,則$\left\{\begin{array}{l}{2a>0}\\{△={a}^{2}-8a<0}\end{array}\right.$,解得a范圍,即可判斷出結(jié)論.
解答 解:a=0時,不等式2ax2+ax+1>0,即1>0恒成立,因此a=0滿足條件.
a≠0時,不等式2ax2+ax+1>0恒成立”,則$\left\{\begin{array}{l}{2a>0}\\{△={a}^{2}-8a<0}\end{array}\right.$,解得0<a<8.
綜上可得:0≤a<8.
∴“0<a<8”是“不等式2ax2+ax+1>0恒成立”充分不必要條件.
故選:A.
點評 本題考查了二次函數(shù)的性質(zhì)、不等式的解法、簡易邏輯的判斷方法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2019,2017} | B. | {-2015} | C. | {0,2017,-2018} | D. | {2017,2019,-2015} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{2}{3},+∞})$ | B. | (1,+∞) | C. | $({\frac{2}{3},1})∪({1,+∞})$ | D. | $({\frac{2}{3},\frac{5}{3}})∪({\frac{5}{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com