【題目】已知函數(shù)f(x)=1+lnx﹣ ,其中k為常數(shù).
(1)若k=0,求曲線y=f(x)在點(1,f(1))處的切線方程.
(2)若k=5,求證:f(x)有且僅有兩個零點;
(3)若k為整數(shù),且當x>2時,f(x)>0恒成立,求k的最大值.

【答案】
(1)解:當k=0時,f(x)=1+lnx.

因為f′(x)= ,從而f′(1)=1.

又f (1)=1,

所以曲線y=f(x)在點(1,f(1))處的切線方程y﹣1=x﹣1,

即x﹣y=0


(2)解:證明:當k=5時,f(x)=lnx+ ﹣4.

因為f′(x)= ,從而

當x∈(0,10),f′(x)<0,f(x)單調(diào)遞減;

當x∈(10,+∞)時,f′(x)>0,f(x)單調(diào)遞增.

所以當x=10時,f(x)有極小值.

因f(10)=ln10﹣3<0,f(1)=6>0,

所以f(x)在(1,10)之間有一個零點.

因為f(e4)=4+ ﹣4>0,所以f(x)在(10,e4)之間有一個零點.

從而f(x)有兩個不同的零點


(3)解:方法一:由題意知,1+lnx﹣ >0對x∈(2,+∞)恒成立,

即k< 對x∈(2,+∞)恒成立.

令h(x)= ,則h′(x)=

設(shè)v(x)=x﹣2lnx﹣4,則v′(x)=

當x∈(2,+∞)時,v′(x)>0,所以v(x)在(2,+∞)為增函數(shù).

因為v(8)=8﹣2ln8﹣4=4﹣2ln8<0,v(9)=5﹣2ln9>0,

所以存在x0∈(8,9),v(x0)=0,即x0﹣2lnx0﹣4=0.

當x∈(2,x0)時,h′(x)<0,h(x)單調(diào)遞減,

當x∈(x0,+∞)時,h′(x)>0,h(x)單調(diào)遞增.

所以當x=x0時,h(x)的最小值h(x0)=

因為lnx0= ,所以h(x0)= ∈(4,4.5).

故所求的整數(shù)k的最大值為4.

方法二:由題意知,1+lnx﹣ >0對x∈(2,+∞)恒成立.

f(x)=1+lnx﹣ ,f′(x)=

①當2k≤2,即k≤1時,f′(x)>0對x∈(2,+∞)恒成立,

所以f(x)在(2,+∞)上單調(diào)遞增.

而f(2)=1+ln2>0成立,所以滿足要求.

②當2k>2,即k>1時,

當x∈(2,2k)時,f′(x)<0,f(x)單調(diào)遞減,

當x∈(2k,+∞),f′(x)>0,f(x)單調(diào)遞增.

所以當x=2k時,f(x)有最小值f(2k)=2+ln2k﹣k.

從而f(x)>0在x∈(2,+∞)恒成立,等價于2+ln2k﹣k>0.

令g(k)=2+ln2k﹣k,則g′(k)= <0,

從而g(k)在(1,+∞)為減函數(shù).

因為g(4)=ln8﹣2>0,g(5)=ln10﹣3<0,

所以使2+ln2k﹣k>0成立的最大正整數(shù)k=4.

綜合①②,知所求的整數(shù)k的最大值為4


【解析】(1)求出f(x)的解析式,求出導數(shù)和切線的斜率和切點坐標,由點斜式方程即可得到切線方程;(2)求出k=5時f(x)的解析式和導數(shù),求得單調(diào)區(qū)間和極小值,再由函數(shù)的零點存在定理可得(1,10)之間有一個零點,在(10,e4)之間有一個零點,即可得證;(3)方法一、運用參數(shù)分離,運用導數(shù),判斷單調(diào)性,求出右邊函數(shù)的最小值即可;方法二、通過對k討論,運用導數(shù)求出單調(diào)區(qū)間,求出f(x)的最小值,即可得到k的最大值為4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;
(3)求證:當x∈(0,e]時,e2x2 x>(x+1)lnx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z=bi(b∈R), 是實數(shù),i是虛數(shù)單位.
(1)求復數(shù)z;
(2)若復數(shù)(m+z)2所表示的點在第一象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:①f(x)=3﹣ 不可能是k型函數(shù); ②若函數(shù)y=﹣ x2+x是3型函數(shù),則m=﹣4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為 ;
④若函數(shù)y= (a≠0)是1型函數(shù),則n﹣m的最大值為
下列選項正確的是(
A.①③
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,內(nèi)角A,B,C依次成等差數(shù)列,其對邊分別為a,b,c,且b= asinB.
(1)求內(nèi)角C;
(2)若b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若過定點M(﹣1,0)且斜率為k的直線與圓x2+4x+y2﹣5=0在第一象限內(nèi)的部分有交點,則k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若三棱錐P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直線PA與平面PBC所成角的正切值為 ,則三棱錐P﹣ABC的外接球的表面積為( )
A.4π
B.8π
C.16π
D.32π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ax2+bx(a>0,b>0)在點(1,f(1))處的切線斜率為2,則 的最小值是(
A.10
B.9
C.8
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點為F2(1,0),點P(1, )在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過坐標原點O的兩條直線EF,MN分別與橢圓C交于E,F(xiàn),M,N四點,且直線OE,OM的斜率之積為﹣ ,求證:四邊形EMFN的面積為定值.

查看答案和解析>>

同步練習冊答案