分析 把①②代入exf(x),變形為指數(shù)函數(shù)判斷;把③④代入exf(x),求導(dǎo)數(shù)判斷.
解答 解:對(duì)于①,f(x)=2-x,則g(x)=exf(x)=${e}^{x}•{2}^{-x}=(\frac{e}{2})^{x}$為實(shí)數(shù)集上的增函數(shù);
對(duì)于②,f(x)=3-x,則g(x)=exf(x)=${e}^{x}•{3}^{-x}=(\frac{e}{3})^{x}$為實(shí)數(shù)集上的減函數(shù);
對(duì)于③,f(x)=x3,則g(x)=exf(x)=ex•x3,
g′(x)=ex•x3+3ex•x2=ex(x3+3x2)=ex•x2(x+3),當(dāng)x<-3時(shí),g′(x)<0,
∴g(x)=exf(x)在定義域R上先減后增;
對(duì)于④,f(x)=x2+2,則g(x)=exf(x)=ex(x2+2),
g′(x)=ex(x2+2)+2xex=ex(x2+2x+2)>0在實(shí)數(shù)集R上恒成立,
∴g(x)=exf(x)在定義域R上是增函數(shù).
∴具有M性質(zhì)的函數(shù)的序號(hào)為①④.
故答案為:①④.
點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性的性質(zhì),訓(xùn)練了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -2e-3 | C. | 5e-3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | I1<I2<I3 | B. | I1<I3<I2 | C. | I3<I1<I2 | D. | I2<I1<I3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (1,2] | C. | (-2,1) | D. | [-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{18}$ | B. | $\frac{4}{9}$ | C. | $\frac{5}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{8}-\frac{{y}^{2}}{8}$=1 | C. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{8}$=1 | D. | $\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -1或$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | -1或$-\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com