9.設(shè)函數(shù)y=$\sqrt{4-{x}^{2}}$的定義域?yàn)锳,函數(shù)y=ln(1-x)的定義域?yàn)锽,則A∩B=(  )
A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)

分析 根據(jù)冪函數(shù)及對數(shù)函數(shù)定義域的求法,即可求得A和B,即可求得A∩B.

解答 解:由4-x2≥0,解得:-2≤x≤2,則函數(shù)y=$\sqrt{4-{x}^{2}}$的定義域[-2,2],
由對數(shù)函數(shù)的定義域可知:1-x>0,解得:x<1,則函數(shù)y=ln(1-x)的定義域(-∞,1),
則A∩B=[-2,1),
故選D.

點(diǎn)評 本題考查函數(shù)定義的求法,交集及其運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱,若sinα=$\frac{1}{3}$,則cos(α-β)=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在回歸分析與獨(dú)立性檢驗(yàn)中:
①相關(guān)關(guān)系是一種確定關(guān)系  
②在回歸模型中,x稱為解釋變量,y稱為預(yù)報(bào)變量  
③R2越接近于1,表示回歸的效果越好  
④在獨(dú)立性檢驗(yàn)中,|ad-bc|越大,兩個(gè)分類變量關(guān)系越弱;|ad-bc|越小,兩個(gè)分類變量關(guān)系越強(qiáng)  
⑤殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,帶狀區(qū)域?qū)挾仍秸,回歸方程的預(yù)報(bào)精度越高,
正確命題的個(gè)數(shù)為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C:$\frac{{x}^{2}}{2}$+y2=1上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足$\overrightarrow{NP}$=$\sqrt{2}$$\overrightarrow{NM}$.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)Q在直線x=-3上,且$\overrightarrow{OP}$•$\overrightarrow{PQ}$=1.證明:過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
9.9510.129.969.9610.019.929.9810.04
10.269.9110.1310.029.2210.0410.059.95
經(jīng)計(jì)算得$\overline{x}$=$\frac{1}{16}\sum_{i=1}^{16}{x_i}$=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})}$≈0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
用樣本平均數(shù)$\overline{x}$作為μ的估計(jì)值$\hat μ$,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值$\hat σ$,利用估計(jì)值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,$\sqrt{0.008}$≈0.09.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。
A.0,0B.1,1C.0,1D.1,0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)exf(x)(e≈2.71828…是自然對數(shù)的底數(shù))在f(x)的定義域上單調(diào)遞增,則稱函數(shù)f(x)具有M性質(zhì).下列函數(shù)中所有具有M性質(zhì)的函數(shù)的序號為①④.
①f(x)=2-x   ②f(x)=3-x       ③f(x)=x3  ④f(x)=x2+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知一個(gè)正方體的所有頂點(diǎn)在一個(gè)球面上,若這個(gè)正方體的表面積為18,則這個(gè)球的體積為$\frac{9π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列推理正確的是( 。
A.如果不買彩票,那么就不能中獎(jiǎng),因?yàn)槟阗I了彩票,所以你一定中獎(jiǎng)
B.因?yàn)閍>b,a>c,所以a-b>a-c
C.若a,b均為正實(shí)數(shù),則lg a+lg b≥$\sqrt{lga•lgb}$
D.若a為正實(shí)數(shù),ab<0,則$\frac{a}$+$\frac{a}$=-($\frac{-a}$+$\frac{-b}{a}$)≤-2 $\sqrt{(\frac{-a})•(\frac{-b}{a})}$=-2

查看答案和解析>>

同步練習(xí)冊答案