A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{4\sqrt{3}}{3}$ | C. | 2 | D. | 4 |
分析 由已知利用三角形面積公式可求b,進而利用余弦定理解得a,根據(jù)正弦定理即可求得外接圓半徑R的值.
解答 解:在△ABC中,由A=30°,c=AB=2,得到S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$b×2×$\frac{1}{2}$=$\sqrt{3}$,
解得b=2$\sqrt{3}$,根據(jù)余弦定理得:a2=12+4-2×2$\sqrt{3}$×2×$\frac{\sqrt{3}}{2}$=4,解得a=2,
根據(jù)正弦定理得:$\frac{a}{sinA}=2R$(R為外接圓半徑),則R=$\frac{2}{2×\frac{1}{2}}$=2.
故選:C.
點評 本題主要考查了三角形面積公式,余弦定理,正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | C. | 等腰直角三角形 | D. | 鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{3}{7}$ | C. | $\frac{5}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $\frac{{5\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com