12.已知等差數(shù)列{an}滿足a1+a2=4,a7-a4=6,則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和Sn=$\frac{n}{2n+1}$.

分析 由等差數(shù)列的性質(zhì),求出數(shù)列的首項與公差,得到通項公式,然后利用裂項求和即可求解.

解答 解:a1+a2=4,a7-a4=6,可知,2a1+d=4.3d=6,解得d=2,a1=1
∴an=a1+(n-1)d=2n-1
∵bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$[$\frac{1}{2n-1}$$-\frac{1}{2n+1}$],
∴Sn=$\frac{1}{2}$[$1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+$$\frac{1}{2n-1}$$-\frac{1}{2n+1}$]=$\frac{n}{2n+1}$.
故答案為:$\frac{n}{2n+1}$.

點評 本題主要考查了等差數(shù)列的 性質(zhì)及通項公式的應(yīng)用,及數(shù)列的裂項求和方法的應(yīng)用,屬于數(shù)列知識的綜合應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$•$\overrightarrow$=-8,且向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的投影為-3$\sqrt{2}$,則|$\overrightarrow$|=$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,則(  )
A.f(x1)<f(x2B.f(x1)>f(x2
C.f(x1)=f(x2D.f(x1)<f(x2)和f(x1)=f(x2)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)z滿足z+zi=3+2i,則在復(fù)平面內(nèi)z對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,網(wǎng)格上小正方形的邊長為1,粗線畫出的是某空間幾何體的三視圖,則該幾何體的體積為( 。
A.12B.6C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax2-lnx,a∈R.
(Ⅰ)當a=1時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)是否存在實數(shù)a,使函數(shù)f(x)在區(qū)間(0,e]上的最小值為$\frac{3}{2}$,若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若三進制數(shù)10k2(3)(k為正整數(shù))化為十進制數(shù)為35,則k=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.乒乓球是我國的國球,在2016年巴西奧運會上盡領(lǐng)風騷,包攬該項目全部金牌,現(xiàn)某市有甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費方式不同,甲家每張球臺每小時6元;乙家按月計費,一個月中20小時以內(nèi)(含20小時)每張球臺90元,超過20小時的部分,每張球臺每小時2元,某公司準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于12小時,也不超過30小時.
(Ⅰ)設(shè)在甲家租一張球臺開展活動x小時的收費為 f(x)元(12≤x≤30),在乙家租一張球臺開展活動x小時的收費為g(x)元(12≤x≤30),試求f(x)與g(x)的解析式;
(II)若該公司的活動時間大于15小時,選擇哪家比較合算?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在等腰直角三角形ABC中,AB=AC=a,且AD⊥BC于D,沿AD折成二面角B-AD-C后,$BC=\frac{{\sqrt{2}a}}{2}$,這時二面角B-AD-C的大小為60°.

查看答案和解析>>

同步練習(xí)冊答案