2.在等腰直角三角形ABC中,AB=AC=a,且AD⊥BC于D,沿AD折成二面角B-AD-C后,$BC=\frac{{\sqrt{2}a}}{2}$,這時(shí)二面角B-AD-C的大小為60°.

分析 BD⊥AD,CD⊥AD,∠BDC是二面角B-AD-C的平面角,推導(dǎo)出BD=CD=BC,由此能求出二面角B-AD-C的大。

解答 解:如圖,∵等腰直角三角形ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,$BC=\frac{{\sqrt{2}a}}{2}$,
∴BD⊥AD,CD⊥AD,∴∠BDC是二面角B-AD-C的平面角,
∵AB=AC=a,∴BD=CD=$\frac{\sqrt{2}}{2}$a,
∴BD=CD=BC,
∴∠BDC=60°,
∴二面角B-AD-C的大小為60°.
故答案為:60°.

點(diǎn)評(píng) 本題考查二面角的大小的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知等差數(shù)列{an}滿(mǎn)足a1+a2=4,a7-a4=6,則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)$f(x)={log_2}\frac{1-tanx}{1+tanx}$,若$f(\frac{π}{2}+a)=1$,則$f(\frac{π}{2}-a)$=( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.橢圓的中心在原點(diǎn),長(zhǎng)軸在x軸上,一焦點(diǎn)與短軸的兩端點(diǎn)的連線(xiàn)互相垂直,焦點(diǎn)與長(zhǎng)軸上較近頂點(diǎn)的距離為$4({\sqrt{2}-1})$,則此橢圓的方程是( 。
A.$\frac{x^2}{16}+\frac{y^2}{32}=1$B.$\frac{x^2}{32}+\frac{y^2}{4}=1$C.$\frac{x^2}{32}+\frac{y^2}{16}=1$D.$\frac{x^2}{64}+\frac{y^2}{32}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若一個(gè)圓錐的底面半徑是母線(xiàn)長(zhǎng)的一半,側(cè)面積的數(shù)值是它的體積的數(shù)值的$\frac{1}{2}$,則該圓錐的底面半徑為(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,網(wǎng)格上小正方形的邊長(zhǎng)為1,粗線(xiàn)畫(huà)出的是一個(gè)三棱錐的三視圖,該三棱錐的外接球的體積記為V1,俯視圖繞底邊AB所在直線(xiàn)旋轉(zhuǎn)一周形成的幾何體的體積記為V2,則V1:V2( 。
A.4$\sqrt{2}$B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.“x>5”是“x>3”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.方程$\left\{\begin{array}{l}{x={2}^{t}-{2}^{-t}}\\{y={2}^{t}+{2}^{-t}}\end{array}\right.$(t為參數(shù))表示的曲線(xiàn)是( 。
A.雙曲線(xiàn)B.雙曲線(xiàn)的上支C.雙曲線(xiàn)的下支D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=(m2-m-1)x4m+3是冪函數(shù),對(duì)任意x1,x2∈(0,+∞),且x1≠x2,滿(mǎn)足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,若a,b∈R,且a+b>0,ab<0.則f(a)+f(b)的值( 。
A.恒大于0B.恒小于0C.等于0D.無(wú)法判斷

查看答案和解析>>

同步練習(xí)冊(cè)答案