分析 BD⊥AD,CD⊥AD,∠BDC是二面角B-AD-C的平面角,推導(dǎo)出BD=CD=BC,由此能求出二面角B-AD-C的大。
解答 解:如圖,∵等腰直角三角形ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,$BC=\frac{{\sqrt{2}a}}{2}$,
∴BD⊥AD,CD⊥AD,∴∠BDC是二面角B-AD-C的平面角,
∵AB=AC=a,∴BD=CD=$\frac{\sqrt{2}}{2}$a,
∴BD=CD=BC,
∴∠BDC=60°,
∴二面角B-AD-C的大小為60°.
故答案為:60°.
點(diǎn)評(píng) 本題考查二面角的大小的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 0 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{x^2}{16}+\frac{y^2}{32}=1$ | B. | $\frac{x^2}{32}+\frac{y^2}{4}=1$ | C. | $\frac{x^2}{32}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{64}+\frac{y^2}{32}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 雙曲線(xiàn) | B. | 雙曲線(xiàn)的上支 | C. | 雙曲線(xiàn)的下支 | D. | 圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 恒大于0 | B. | 恒小于0 | C. | 等于0 | D. | 無(wú)法判斷 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com