如圖,已知?jiǎng)又本l經(jīng)過(guò)點(diǎn)P(4,0),交拋物線y2=2ax(a>0)于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O是PQ的中點(diǎn),設(shè)直線AQ,BQ的斜率分別為k1,k2
(1)證明:k1+k2=0;
(2)當(dāng)a=2時(shí),是否存在垂直于x軸的直線l′,被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,請(qǐng)求出直線l′的方程;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)設(shè)直線l方程與拋物線方程聯(lián)立可得:y2-2amy-8a=0,表示出直線AQ,BQ的斜率,利用韋達(dá)定理可證;
(2)假設(shè)存在這樣的直線,記作l':x=t.若要滿足題意,只需r2-d2為常數(shù)即可.
解答:(1)證明:設(shè)直線l方程為x=my+4(m∈R),與拋物線方程聯(lián)立可得:y2-2amy-8a=0,
再設(shè)點(diǎn)A(
y12
2a
,y1)
,B(
y22
2a
,y2)
,則y1•y2=-8a
所以k1=
y1
y12
2a
+4
=
2ay1
y12+8a
=
2a•
-8a
y2
64a2
y22
+8a
=-
2ay2
y22+8a
=-k2
,故k1+k2=0-----(7分)
(2)解:因?yàn)閍=2,所以拋物線的方程為:y2=4x.
記線段AP中點(diǎn)即圓心為O′(
y12+16
8
y1
2
)
,則圓的半徑r=|O′P|=
(
y12+16
8
-4)
2
+
y12
4
,
假設(shè)存在這樣的直線,記作l':x=t.若要滿足題意,只需r2-d2為常數(shù)即可.--------(10分)
故r2-d2=(
y12+16
8
-4)2+
y12
4
-(t-
y12+16
8
)2=(
t
4
-
3
4
)y12-t2+4t

所以
t
4
=
3
4
,即t=3時(shí),能保證為常數(shù),故存在這樣的直線l':x=3滿足題意.-----(15分)
點(diǎn)評(píng):本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查圓中弦長(zhǎng)的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:浙江省寧波市鄞州區(qū)2012屆高三高考適應(yīng)性考試(3月)數(shù)學(xué)文科試題 題型:044

如圖,已知?jiǎng)又本l經(jīng)過(guò)點(diǎn)P(4,0),交拋物線y2=2ax(a>0)于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O是PQ的中點(diǎn),設(shè)直線AQ,BQ的斜率分別為k1,k2

(1)證明:k1+k2=0

(2)當(dāng)a=2時(shí),是否存在垂直于x軸的直線,被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知?jiǎng)又本l過(guò)點(diǎn) P(4,0),交拋物線y2=2mx(m>0)于A、B兩點(diǎn),O為PQ的中點(diǎn).(1)求證:

∠AQP=∠BQP.(2)當(dāng)m=2時(shí),是否存在垂直于x軸的直線l′被以AP為直徑的圓所截得的弦長(zhǎng)恒為定值?如果存在,求出l′的方程;如果不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省模擬題 題型:解答題

如圖,已知?jiǎng)又本l經(jīng)過(guò)點(diǎn)P(4,0),交拋物線y2=2ax(a>0)于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O是PQ的中點(diǎn),設(shè)直線AQ,BQ的斜率分別為k1,k2,
(1)證明:k1+k2=0;
(2)當(dāng)a=2時(shí),是否存在垂直于x軸的直線l′,被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,請(qǐng)求出直線l′的方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年浙江省寧波市鄞州區(qū)高三3月適應(yīng)性考試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知?jiǎng)又本l經(jīng)過(guò)點(diǎn)P(4,0),交拋物線y2=2ax(a>0)于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O是PQ的中點(diǎn),設(shè)直線AQ,BQ的斜率分別為k1,k2
(1)證明:k1+k2=0;
(2)當(dāng)a=2時(shí),是否存在垂直于x軸的直線l′,被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,請(qǐng)求出直線l′的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案