對于,給出下列四個不等式                 

   ①    ②

   ③     ④

   其中成立的是            

 

【答案】

②④ 

【解析】解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061922320323517004/SYS201206192233362351299290_DA.files/image001.png">,利用對數(shù)函數(shù)的單調(diào)性可知,1中應(yīng)為,2成立,3中應(yīng)為,錯誤,4成立,故為②④ 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=a2=1,an+1+(n-1)an-1=(n+1)an,n=2,3,4,….關(guān)于數(shù)列{an}給出下列四個結(jié)論:
①數(shù)列{an+1-nan}是常數(shù)列;                   
②對于任意正整數(shù)n,有an≤an+1成立;
③數(shù)列{an}中的任意連續(xù)3項(xiàng)都不會成等比數(shù)列;   
n
k=1
ak
ak+2
=
n
n+1

其中全部正確結(jié)論的序號是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意實(shí)數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[-1.5]=-2,[2.5]=2,定義函數(shù){x}=x-[x],則給出下列四個命題:①函數(shù){x}的定義域是R,值域?yàn)閇0,1];②方程{x}=
1
2
有無數(shù)個解;③函數(shù){x}是周期函數(shù);④函數(shù){x}是增函數(shù).其中正確的序號是( 。
A、①③B、②④C、①④D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后解答問題;對于任意實(shí)數(shù)x,符號[x]表示“不超過x的最大整
數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),[x]是x,當(dāng)x不是整數(shù)時,[x]是x左側(cè)的第一個整數(shù),這個函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù),如[-2]=-2、[-1.5]=-2、[2.5]=2  定義函數(shù){x}=x-[x],給出下列四個命題;
①函數(shù)[x]的定義域是R,值域?yàn)閇0,1];
②方程{x}=
12
有無數(shù)個解;
③函數(shù){x}是周期函數(shù);
④函數(shù){x}是增函數(shù).
其中正確命題的序號是
 
(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在正方體ABCD-A1B1C1D1中,點(diǎn)E是棱CC1上的一個動點(diǎn),平面BED1交棱AA1于點(diǎn)F.給出下列四個結(jié)論:
①存在點(diǎn)E,使得A1C1∥平面BED1F;
②存在點(diǎn)E,使得B1D⊥平面BED1F;
③對于任意的點(diǎn)E,平面A1C1D⊥平面BED1F;
④對于任意的點(diǎn)E,四棱錐B1-BED1F的體積均不變.
其中,所有正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 對于函數(shù), 給出下列四個命題:

①函數(shù)圖象關(guān)于直線對稱; ②函數(shù)圖象關(guān)于點(diǎn)對稱;  ③函數(shù)圖象可看作是把的圖象向左平移個單位而得到;  ④ 函數(shù)圖象可看作是把的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)而得到. 則以上四個命題中,正確的是             (填寫序號) 

查看答案和解析>>

同步練習(xí)冊答案