設(shè)(1-x)(1+2x)5=a+a1x+a2x2+…+a6x6,則a2=   
【答案】分析:要求a2,只要求解展開(kāi)式中的含x2項(xiàng)的系數(shù),根據(jù)題意只要先求出(1+2x)5的通項(xiàng),即可求解
解答:解∵(1-x)(1+2x)5=a+a1x+a2x2+…+a6x6,
而(1+2x)5展開(kāi)式的通項(xiàng)為
∴(1-x)(1+2x)5=展開(kāi)式中含x2的項(xiàng)為=30x2
∴a2=30
故答案為:30
點(diǎn)評(píng):本題主要考查了二項(xiàng)展開(kāi)式的通項(xiàng)在求解指定項(xiàng)中的應(yīng)用,解題的關(guān)鍵是尋求指定項(xiàng)得到的途徑
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列兩個(gè)對(duì)應(yīng)是否是集合A到集合B的映射?

(1)設(shè)A={1,2,3,4},B={3,4,5,6,7,8,9},對(duì)應(yīng)法則f:x→2x+1;

(2)設(shè)A=N *,B={0,1},對(duì)應(yīng)法則f:x→x除以2得到的余數(shù);

(3)設(shè)X={1,2,3,4},Y={1,,,},f:x→x取倒數(shù)?;

(4)A={(x,y)||x|<2,x+y<3,x∈Z,y∈N},B={0,1,2},f:(x,y)→x+y;

(5)A={x|x>2,x∈N},B=N,f:x→小于x的最大質(zhì)數(shù);

(6)A=N,B={0,1,2},f:x→x被3除所得余數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省新余四中高三(上)第一次周周練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省臺(tái)州市仙居縣宏大中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年浙江省高考數(shù)學(xué)沖刺試卷A(理科)(解析版) 題型:解答題

設(shè)
(1)當(dāng)λ1=1,λ2=0時(shí),設(shè)x1,x2是f(x)的兩個(gè)極值點(diǎn),
①如果x1<1<x2<2,求證:f'(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)時(shí),函數(shù)g(x)=f'(x)+2(x-x2)的最小值為h(a),求h(a)的最大值.
(2)當(dāng)λ1=0,λ2=1時(shí),
①求函數(shù)y=f(x)-3(ln3+1)x的最小值.
②對(duì)于任意的實(shí)數(shù)a,b,c,當(dāng)a+b+c=3時(shí),求證3aa+3bb+3cc≥9.

查看答案和解析>>

同步練習(xí)冊(cè)答案