【題目】函數(shù)的圖象過點,且相鄰兩個最高點與最低點的距離為.
(1)求函數(shù)的解析式和單調(diào)增區(qū)間;
(2)若將函數(shù)圖象上所有的點向左平移個單位長度,再將所得圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,得到函數(shù)的圖象,求在上的值域.
【答案】(1);;(2)
【解析】
(1)根據(jù)相鄰兩個最高點和最低點的距離,建立方程,求出,利用已知點,求出,可得函數(shù)的解析式,利用正弦函數(shù)的單調(diào)增區(qū)間,可得結(jié)論;(2)根據(jù)三角函數(shù)圖象變換規(guī)則求出的解析式,根據(jù)角的范圍,利用正弦函數(shù)的性質(zhì)即可得出結(jié)論.
(1)相鄰兩個最高點和最低點的距離為,可得,解得,,
在函數(shù)圖象上,
,
.
由,得,
的單調(diào)增區(qū)間為.
(2)向左平移個單位長度得,
圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>得,
當(dāng)時,,,
,
在上的值域為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若存在極值,求實數(shù)a的取值范圍;
(2)設(shè),設(shè)是定義在上的函數(shù).
(ⅰ)證明:在上為單調(diào)遞增函數(shù)(是的導(dǎo)函數(shù));
(ⅱ)討論的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標(biāo)準(zhǔn),先對本市50%的企業(yè)進(jìn)行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:
評估得分 | ||||
評定等級 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
獎勵(萬元) | 20 | 40 | 80 |
(1)環(huán)保部門對企業(yè)抽查評估完成后,隨機(jī)抽取了50家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:
評估得分 | ||||||
頻率 | 0.04 | 0.10 | 0.20 | 0.12 |
其中、表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是73.6.現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機(jī)抽取3個,若以樣本中頻率為概率,求至少有兩家企業(yè)的獎勵不少于40萬元的概率;
(2)某企業(yè)為取得一個好的得分,在評估前投入80萬元進(jìn)行技術(shù)改造,由于技術(shù)水平問題,被評定為“合格”“良好”和“優(yōu)秀”的概率分別為,和,且由此增加的產(chǎn)值分別為20萬元,40萬元和60萬元.設(shè)該企業(yè)當(dāng)年因改造而增加的利潤為萬元,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標(biāo)準(zhǔn),先對本市的企業(yè)進(jìn)行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:
評估得分 | ||||
評定等級 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
獎勵(萬元) |
環(huán)保部門對企業(yè)評估完成后,隨機(jī)抽取了家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:
評估得分 | ||||||
頻率 |
其中、表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是.
(1)現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機(jī)抽取個,若以樣本中頻率為概率,求該家企業(yè)的獎勵不少于萬元的概率;
(2)現(xiàn)從樣本“不合格”、“合格”、“良好”三個等級中,按分層抽樣的方法抽取家企業(yè),再從這家企業(yè)隨機(jī)抽取家,求這兩家企業(yè)所獲獎勵之和不少于萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的每條棱的長度都相等,,分別是棱,的中點,是棱上一點,且平面.
(1)證明:平面.
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上單調(diào),且函數(shù)的圖象關(guān)于直線對稱,若數(shù)列是公差不為0的等差數(shù)列,且,則的前100項的和為( )
A. 300B. 100C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,求在區(qū)間上的最大值和最小值;
(3)當(dāng)時,若方程在區(qū)間上有唯一解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)在所給的坐標(biāo)紙上作出函數(shù)的圖像(不要求寫出作圖過程);
(2)令, 求函數(shù)的定義域及不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com