16.程序框圖如圖所示,若運(yùn)行結(jié)果輸出s=120,則判斷框內(nèi)應(yīng)填入( 。
A.n≥5?B.n≤5?C.n≥4?D.n≤4?

分析 由題意,s=1×2×3×4×5=120,結(jié)合框圖,即可得出結(jié)論.

解答 解:由題意,s=1×2×3×4×5=120,
∵運(yùn)行結(jié)果輸出s=120,∴判斷框內(nèi)應(yīng)填入n≥5?
故選A.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)運(yùn)行結(jié)果輸出s=120,判斷退出循環(huán)的條件是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知四棱錐P-ABCD的底面ABCD為菱形,且PA⊥底面ABCD,∠ABC=60°,點(diǎn)E、F分別為BC、PD的中點(diǎn),PA=AB=2.
(Ⅰ)證明:AE⊥平面PAD;
(Ⅱ)求多面體PAECF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,底面為平行四邊形的四棱柱ABCD-A'B'C'D'中,DD'⊥平面ABCD,∠DAB=$\frac{π}{3}$,AB=2AD,DD'=3AD,E、F分別是線段AB、D'E的中點(diǎn).
(Ⅰ)求證:CE⊥DF;
(Ⅱ)求四棱錐F-AECD與四棱柱ABCD-A'B'C'D'的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知α為銳角,且sinα=$\frac{4}{5}$,則cos(π+α)=( 。
A.一$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知△ABC中,AC=$\sqrt{2}$,BC=$\sqrt{6}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,若線段BA的延長(zhǎng)線上存在點(diǎn)D,使∠BDC=$\frac{π}{4}$,則CD=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知點(diǎn)A(1,0),點(diǎn)B是y軸正半軸上一點(diǎn),若I是△AOB(O是坐標(biāo)原點(diǎn))的內(nèi)心,且$\overrightarrow{OI}$•$\overrightarrow{OA}=\frac{1}{3}$,則△AOB內(nèi)切圓的標(biāo)準(zhǔn)方程是(x-$\frac{1}{3}$)2+(y-$\frac{1}{3}$)2=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.運(yùn)行下列程序,當(dāng)輸入數(shù)值-2時(shí),輸出結(jié)果是( 。
A.7B.3C.0D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=log2(x2-2x-3),則下列各區(qū)間中,能滿足f(x)單調(diào)遞減的是(  )
A.(3,6)B.(1,2)C.(-1,3)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)=4cosωx•sin(ωx+\frac{π}{4})$(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案