11.已知△ABC中,AC=$\sqrt{2}$,BC=$\sqrt{6}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,若線段BA的延長(zhǎng)線上存在點(diǎn)D,使∠BDC=$\frac{π}{4}$,則CD=$\sqrt{3}$.

分析 由已知利用三角形面積公式可求sin∠ACB=$\frac{1}{2}$,從而可求∠ACB=$\frac{π}{6}$,在△ABC中,由余弦定理可得AB,進(jìn)而可求∠B,在△BCD中,由正弦定理可得CD的值.

解答 解:∵AC=$\sqrt{2}$,BC=$\sqrt{6}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$=$\frac{1}{2}$AC•BC•sin∠ACB=$\frac{1}{2}×\sqrt{2}×\sqrt{6}×$sin∠ACB,
∴sin∠ACB=$\frac{1}{2}$,
∴∠ACB=$\frac{π}{6}$,或$\frac{5π}{6}$,
∵若∠ACB=$\frac{5π}{6}$,∠BDC=$\frac{π}{4}$<∠BAC,可得:∠BAC+∠ACB>$\frac{π}{4}$+$\frac{5π}{6}$>π,與三角形內(nèi)角和定理矛盾,
∴∠ACB=$\frac{π}{6}$,
∴在△ABC中,由余弦定理可得:AB=$\sqrt{A{C}^{2}+B{C}^{2}-2AC•BC•cos∠ACB}$=$\sqrt{2+6-2×\sqrt{2}×\sqrt{6}×\frac{\sqrt{3}}{2}}$=$\sqrt{2}$,
∴∠B=$\frac{π}{6}$,
∴在△BCD中,由正弦定理可得:CD=$\frac{BC•sinB}{sin∠BDC}$=$\frac{\sqrt{6}×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查了三角形面積公式,余弦定理,正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,求∠ACB的值是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某同學(xué)一個(gè)學(xué)期內(nèi)各次數(shù)學(xué)測(cè)驗(yàn)成績(jī)的莖葉圖如圖所示,則該組數(shù)據(jù)的中位數(shù)是83.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若點(diǎn)P(x,y)是區(qū)域$\left\{\begin{array}{l}1≤x+y≤3\\ 1≤y-x≤3\end{array}\right.$內(nèi)的任意一點(diǎn),且為直線y=kx上的點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.$[-\frac{1}{2},\frac{1}{2}]$B.[-2,2]C.(-∞,-2]∪[2,+∞)D.$(-∞,-\frac{1}{2}]∪[\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在一次植樹(shù)活動(dòng)中,四名同學(xué)分別種植5棵樹(shù)苗,每棵樹(shù)苗成活的概率為$\frac{1}{2}$.如果一名同學(xué)種植的5棵樹(shù)苗中至少3棵樹(shù)苗成活,則認(rèn)為該名同學(xué)植樹(shù)活動(dòng)成績(jī)合格,否則認(rèn)為該名同學(xué)植樹(shù)活動(dòng)成績(jī)不合格.某名同學(xué)植樹(shù)活動(dòng)成績(jī)不合格時(shí),需要進(jìn)行一次補(bǔ)種樹(shù)苗,假設(shè)每人的補(bǔ)種樹(shù)苗費(fèi)用均為50元.
(1)求四名同學(xué)中恰有兩名同學(xué)需要補(bǔ)種樹(shù)苗的概率;
(2)設(shè)X為需要補(bǔ)種樹(shù)苗的人數(shù),Y為補(bǔ)種樹(shù)苗的總費(fèi)用,求X的分布列和Y的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知x與y之間的一組數(shù)據(jù):
x1234
ym3.24.87.5
若y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=2.1x-1.25,則m的值為( 。
A.lB.0.85C.0.7D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.程序框圖如圖所示,若運(yùn)行結(jié)果輸出s=120,則判斷框內(nèi)應(yīng)填入( 。
A.n≥5?B.n≤5?C.n≥4?D.n≤4?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,${sin^2}A+{sin^2}B-{sin^2}(A+B)=\sqrt{2}sinAsinB$.
(1)求角C的大。
(2)若$f(x)=4sin(x-\frac{C}{2})sin(x+\frac{A+B}{2})$且A、B、C成等差數(shù)列,求f(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1,設(shè)f(x)=$\frac{g(x)}{x}$.
(Ⅰ)求a、b的值;
(Ⅱ)若不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.北京時(shí)間3月10日,CBA半決賽開(kāi)打,采用7局4勝制(若某對(duì)取勝四場(chǎng),則終止本次比賽,并獲得進(jìn)入決賽資格),采用2-3-2的賽程,遼寧男籃將與新疆男籃爭(zhēng)奪一個(gè)決賽名額,由于新疆隊(duì)常規(guī)賽占優(yōu),決賽時(shí)擁有主場(chǎng)優(yōu)勢(shì)(新疆先兩個(gè)主場(chǎng),然后三個(gè)客場(chǎng),再兩個(gè)主場(chǎng)),以下是總決賽賽程:
日期比賽隊(duì)主場(chǎng)客場(chǎng)比賽時(shí)間比賽地點(diǎn)
17年3月10日新疆-遼寧新疆遼寧20:00烏魯木齊
17年3月12日新疆-遼寧新疆遼寧20:00烏魯木齊
17年3月15日遼寧-新疆遼寧新疆20:00本溪
17年3月17日遼寧-新疆遼寧新疆20:00本溪
17年3月19日遼寧-新疆遼寧新疆20:00本溪
17年3月22日新疆-遼寧新疆遼寧20:00烏魯木齊
17年3月24日新疆-遼寧新疆遼寧20:00烏魯木齊
(1)若考慮主場(chǎng)優(yōu)勢(shì),每個(gè)隊(duì)主場(chǎng)獲勝的概率均為$\frac{2}{3}$,客場(chǎng)取勝的概率均為$\frac{1}{3}$,求遼寧隊(duì)以比分4:1獲勝的概率;
(2)根據(jù)以往資料統(tǒng)計(jì),每場(chǎng)比賽組織者可獲得門(mén)票收入50萬(wàn)元(與主客場(chǎng)無(wú)關(guān)),若不考慮主客場(chǎng)因素,每個(gè)隊(duì)每場(chǎng)比賽獲勝的概率均為$\frac{1}{2}$,設(shè)本次半決賽中(只考慮這兩支隊(duì))組織者所獲得的門(mén)票收入為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案