已知函數(shù)

⑴當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

    ⑵求函數(shù)在區(qū)間上的最小值.

解析:,, ………2分

, 解得

注意到,所以函數(shù)的單調(diào)遞增區(qū)間是

,解得,

注意到,所以函數(shù)的單調(diào)遞減區(qū)間是

綜上所述,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.…………6分

⑵當(dāng)時(shí), ,所以,               

設(shè)

①當(dāng)時(shí),有, 此時(shí),所以,上單調(diào)遞增.所以.          …………8分

②當(dāng)時(shí),,

,即,解得(舍);

,即,解得

,即時(shí), 在區(qū)間單調(diào)遞減,

所以

,即時(shí), 在區(qū)間上單調(diào)遞減,

在區(qū)間上單調(diào)遞增,

所以

,即時(shí), 在區(qū)間單調(diào)遞增,

所以.                           …………14分

綜上所述,當(dāng)時(shí), ;

當(dāng)時(shí),;

當(dāng)時(shí), .                   …………16分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)定義在D上的函數(shù),如果滿足;對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)的上界。已知函數(shù),當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;若,求函數(shù)上的上界T的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北衡水中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間。設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)的上界。

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)的上界。

已知函數(shù),

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)和函

的圖像在處的切線互相平行.

(1)求的值;

(2)設(shè),當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案