分析 (1)由題為已知一元二次不等式的解集,求函數(shù)解析式.可由二次不等式的解法,先找到對應的二次方程,則0,5為二次方程的兩個根,代入可得b,c,函數(shù)解析式可得;
(2)由題為恒成立問題,可等價轉(zhuǎn)化為最值問題,即;2x2-10x+t-2≤0恒成立,再利用函數(shù)g(x)=2x2-10x+t-2,求它的最大值可得t的取值范圍.
解答 解:(1)∵f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),
∴2x2+bx+c<0的解集是(0,5),所以0和5是方程2x2+bx+c=0的兩個根,
由韋達定理知,-$\frac{2}$=5,$\frac{c}{2}$=0,
∴b=-10,c=0,
∴f(x)=2x2-10x.
(2)f(x)+t≤2 恒成立等價于2x2-10x+t-2≤0恒成立,
∴2x2-10x+t-2的最大值小于或等于0.
設g(x)=2x2-10x+t-2≤0,
則由二次函數(shù)的圖象可知g(x)=2x2-10x+t-2在區(qū)間[-1,1]為減函數(shù),
∴g(x)max=g(-1)=10+t≤0,
∴t≤-10.
點評 本題主要考查二次不等式和二次方程之間的關系,以及不等式恒成立的問題,屬于中檔題
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若數(shù)列{an}是公差為1的等差數(shù)列,則數(shù)列{an+3} 是公差為4的等差數(shù)列 | |
B. | 數(shù)列6,4,2,0 是公差為2的等差數(shù)列 | |
C. | 若數(shù)列{an}等差,Sn是其前n項和,則數(shù)列$\{\frac{S_n}{n}\}$也等差 | |
D. | 4與6的等差中項是±5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m>0 | B. | 0<m<1 | C. | m>1 | D. | m>0且m≠1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | 0 | C. | -$\frac{3}{2}$ 或 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com