1.直線l1:x+2ay-1=0,l2:(a+1)x-ay=0,若l1∥l2,則實(shí)數(shù)a的值為(  )
A.-$\frac{3}{2}$B.0C.-$\frac{3}{2}$ 或 0D.2

分析 利用兩條直線平行的條件,建立方程,即可得出結(jié)論.

解答 解:由題意,∵直線l1:x+2ay-1=0,l2:(a+1)x-ay=0,l1∥l2,
∴-a=2a(a+1),
∴a=-$\frac{3}{2}$或0,
故選:C.

點(diǎn)評(píng) 本題考查兩條直線平行的條件,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(x)=x5+ax3+bx-10且f(-2)=10,則f(2)=-30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),
(1)求f(x)的解析式;
(2)若對(duì)于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=log2(x2-x-2)的單調(diào)遞減區(qū)間是(  )
A.(-∞,-1)B.$(-1,\frac{1}{2}]$C.$[\frac{1}{2},2)$D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知x,y滿足$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ x≥1\end{array}\right.$,則$\frac{{{y^2}-2xy+3{x^2}}}{x^2}$的取值范圍為( 。
A.[2,6]B.[2,4]C.[1,6]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=lg(4-x)+$\frac{1}{\sqrt{x-1}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,4)B.[1,4)C.(-∞,1)∪[4,+∞)D.(-∞,1]∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{2}{x},(x>\frac{1}{2})}\\{{x}^{2}+2x+a-1,(x≤\frac{1}{2})}\end{array}\right.$(其中a>0,a為常數(shù)),求函數(shù)f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且cos$\frac{A+C}{2}$=$\frac{1}{2}$.
(1)若a=3,b=$\sqrt{7}$,求c的值;
(2)若f(A)=sin$\frac{A}{2}$($\sqrt{3}$cos$\frac{A}{2}$-sin$\frac{A}{2}$)+$\frac{1}{2}$,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,△ABC是等邊三角形,點(diǎn)D在邊BC的延長(zhǎng)線上,且BC=2CD,AD=$\sqrt{7}$.
(Ⅰ)求$\frac{sin∠CAD}{sin∠D}$的值;
(Ⅱ)求CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案