14.求證:
(1)log${\;}_{{a}^{n}}$bn=logab;
(2)logab=$\frac{1}{lo{g}_a}$.

分析 由已知條件利用對數(shù)的換底公式進行證明.

解答 證明:(1)log${\;}_{{a}^{n}}$bn=$\frac{lg^{n}}{lg{a}^{n}}$=$\frac{nlgb}{nlga}$=$\frac{lgb}{lga}$=logab,
∴l(xiāng)og${\;}_{{a}^{n}}$bn=logab
(2)logab=$\frac{lo{g}_b}{lo{g}_a}$=$\frac{1}{lo{g}_a}$.
∴l(xiāng)ogab=$\frac{1}{lo{g}_a}$.

點評 本題考查對數(shù)式的證明,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{2}$ax2+bx(a≠0).
當(dāng)a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域上是增函數(shù),若函數(shù)φ(x)=e2x+bex,x∈[0,ln 2],求函數(shù)φ(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)復(fù)數(shù)z=-3cosθ+isinθ.(i為虛數(shù)單位)
(1)當(dāng)θ=$\frac{4}{3}$π時,求|z|的值;
(2)當(dāng)θ∈[$\frac{π}{2}$,π]時,復(fù)數(shù)z1=cosθ-isinθ,且z1z為純虛數(shù),求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,∠BAC=120°,AD為角A的平分線,AC=3,AB=6,則AD的長是( 。
A.2B.2或4C.1或2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.由“三角形的面積等于$\frac{1}{2}$×底×高”,想到“三棱錐的體積為$\frac{1}{3}$×底面積×高”,用的是( 。
A.歸納推理B.演繹推理C.類比推理D.特殊推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l1:(a-2)x+4y=5-3a與直線l2:2x+(a+7)y=8垂直,則a=( 。
A.-4或-1B.4C.7或-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示,已知AB是圓O的直徑,點C,D是半圓弧的兩個三等分點,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,則$\overrightarrow{AC}$=( 。
A.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$B.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$C.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線x2=4y的焦點為F,P為該拋物線在第一象限內(nèi)的圖象上的一個動點
(Ⅰ)當(dāng)|PF|=2時,求點P的坐標;
(Ⅱ)求點P到直線y=x-10的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是用相同規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第20個圖案中需用黑色瓷磚塊數(shù)為( 。
A.148B.126C.102D.88

查看答案和解析>>

同步練習(xí)冊答案