20.某十字路口的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)的時間為60秒,小明放學回家途經(jīng)該路口遇到紅燈,則小明至少要等15秒才能出現(xiàn)綠燈的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

分析 求出一名行人前30秒來到該路口遇到紅燈,即可求出至少需要等待20秒才出現(xiàn)綠燈的概率.

解答 解:∵紅燈持續(xù)時間為60秒,至少需要等待15秒才出現(xiàn)綠燈,
∴一名行人前45秒來到該路口遇到紅燈,
∴至少需要等待15秒才出現(xiàn)綠燈的概率為$\frac{45}{60}$=$\frac{3}{4}$.
故選:C

點評 本題考查概率的計算,考查古典概型,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=x•ex,若關于x的方程$[{f(x)+\frac{1}{2e}}]•[{f(x)-λ}]=0$有僅有3個不同的實數(shù)解,則實數(shù)λ的取值范圍是[0,+∞)∪{-$\frac{1}{e}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.圓C1:x2+y2+2ax+a2-9=0和圓C2:x2+y2-4by-1+4b2=0只有一條公切線,若a∈R,b∈R,且ab≠0,則$\frac{4}{a^2}+\frac{1}{b^2}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一個幾何體的三視圖如右圖所示,其中俯視圖是一個正三角形及其內切圓,則該幾何體的體積為( 。
A.$16\sqrt{3}-\frac{16π}{3}$B.$\frac{{16\sqrt{3}-16π}}{3}$C.$8\sqrt{3}-\frac{8π}{3}$D.$\frac{{8\sqrt{3}-8π}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)是定義在R上的函數(shù),f'(x)是f(x)的導函數(shù).給出如下四個結論:
①若$f'(x)+\frac{f(x)}{x}>0$,且f(0)=e,則函數(shù)xf(x)有極小值0;
②若xf'(x)+2f(x)>0,則4f(2n+1)<f(2n),n∈N*;
③若f'(x)-f(x)>0,則f(2017)>ef(2016);
④若f'(x)+f(x)>0,且f(0)=1,則不等式f(x)<e-x的解集為(0,+∞).
所有正確結論的序號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點F(-c,0)(c>0)作圓${x^2}+{y^2}=\frac{a^2}{4}$的切線,切點為E,延長FE交雙曲線右支于點P.若$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,則雙曲線的漸近線方程為(  )
A.$\sqrt{10}x±2y=0$B.$2x±\sqrt{10}y=0$C.$\sqrt{6}x±2y=0$D.$2x±\sqrt{6}y=0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,點${P_n}({n,{S_n}})({n∈{N^*}})$是曲線f(x)=x2+2x上的點.數(shù)列{an}是等比數(shù)列,且滿足b1=a1,b2=a4
(1)求數(shù)列{an},{bn}的通項公式;
(2)記${c_n}={({-1})^n}{a_n}+{b_n}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知2a-b=2ccosB,則角C的大小為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.?x0∈(2,+∞),k(x0-2)>x0(lnx0+1),則正整數(shù)k的最小值為5.
(參考數(shù)據(jù):ln2≈0.6931,ln3≈1.0986,ln5≈1.6094)

查看答案和解析>>

同步練習冊答案