3.如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.將△ABD沿AB折起,使得面ABD⊥面ABC,如圖二,E為AC的中點(diǎn)
(Ⅰ)求證:BD⊥AC;
(Ⅱ)求△ADC的面積;
(Ⅲ)求三棱錐A-BDE的體積.

分析 (Ⅰ)證明BD⊥面ABC,即可證明BD⊥AC;
(Ⅱ)證明AC⊥DE,即可求△ADC的面積;
(Ⅲ)利用等體積轉(zhuǎn)化,即可求三棱錐A-BDE的體積.

解答 (Ⅰ)證明:∵面ABD⊥面ABC,面ABD∩面ABC=AB,BD?面ABD,BD⊥AB,
∴BD⊥面ABC,
又∵AC?面ABC,∴BD⊥AC     …(4分)
(Ⅱ)解:∵BD⊥面ABC,BC?面ABC,∴BD⊥BC,
在Rt△DBC中,BC=BA=2,BD=2,
∴DC=2$\sqrt{2}$,
因?yàn)锽D⊥面ABC,△ABC是正三角形,E為AC的中點(diǎn),
∴AC⊥BE,AC⊥BD⇒AC⊥面BED⇒AC⊥DE
∴$△ABC中BE=\sqrt{3},在Rt△BDE中,DE=\sqrt{B{D^2}+B{E^2}}=\sqrt{4+3}=\sqrt{7}$
∴${S_{△ADC}}=\frac{1}{2}AC×ED=\frac{1}{2}×2×\sqrt{7}=\sqrt{7}$…(8分)
(Ⅲ)解:${V_{A-BDE}}={V_{D-ABE}}=\frac{1}{3}{S_{△ABE}}×BD=\frac{1}{3}×\frac{1}{2}×AE×BE×BD=\frac{1}{6}×1×\sqrt{3}×2=\frac{{\sqrt{3}}}{3}$.
…(12分)

點(diǎn)評(píng) 本題考查線面垂直的證明,考查三角形面積的求法,考查體積的求法,正確運(yùn)用線面垂直的判定定理是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知過點(diǎn)M(-2,1)的直線l與x,y軸正半軸分別交與A、B兩點(diǎn),且S△ABO=$\frac{1}{2}$,求直線l的方程.(結(jié)果用直線的一般方程表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)P1(a1,b1),P(a2,b2),…Pn(an,bn)(n∈N*)在函數(shù)y=log${\;}_{\frac{1}{2}}$x的圖象上.
(1)若數(shù)列{bn}是等差數(shù)列,求證:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{an}的前n項(xiàng)和Sn=1-2-n,過點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍圖形的面積為cn,求最小的實(shí)數(shù)t,使得對(duì)任意的n∈N*,cn≤t恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知“x>k”是“$\frac{3}{|x|}$<1”的充分不必要條件,則k的取值范圍是(  )
A.[3,+∞)B.[2,+∞)C.(3,+∞)D.(一∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,BD⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F(xiàn)為CD中點(diǎn).
(Ⅰ)求證:EF⊥平面BCD
(Ⅱ)求點(diǎn)A到面CDE的距離;
(III)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=Asin(3x+φ)(A>0,0<φ<π),在$x=\frac{π}{12}$時(shí)取得最大值4.
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)若$f({\frac{2}{3}α+\frac{π}{12}})=\frac{12}{5}$,求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a>0,若函數(shù)y=$\frac{8}{x}$,當(dāng)x∈[a,2a]時(shí),y的范圍為[$\frac{a}{4}$,2],則a的值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖所示,在坡度一定的山坡A處測(cè)得山頂上一建筑物CD的頂端C對(duì)于山坡的斜度為15°,向山頂前進(jìn)100m到達(dá)B處,又測(cè)得C對(duì)于山坡的斜度為45°,若CD=50m,山坡對(duì)于地平面的坡度為θ,則cosθ=$\sqrt{3}$-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案