A. | f(2)<f(e)ln2,2f(e)>f(e2) | B. | f(2)<f(e)ln2,2f(e)<f(e2) | ||
C. | f(2)>f(e)ln2,2f(e)<f(e2) | D. | f(2)>f(e)ln2,2f(e)>f(e2) |
分析 構(gòu)造函數(shù)g(x),求出函數(shù)的單調(diào)性,從而求出函數(shù)值的大小即可.
解答 解:令g(x)=$\frac{f(x)}{lnx}$,
則g′(x)=$\frac{f′(x)lnx-f(x)•\frac{1}{x}}{{(lnx)}^{2}}$,
∵f'(x)lnx>$\frac{f(x)}{x}$,
∴g′(x)>0,
∴g(x)在R遞增,
∴g(2)<g(e)<g(e2),
∴f(2)<f(e)ln2,2f(e)<f(e2),
故選:B.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+$\sqrt{3}$ | B. | 2-$\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 射線 | B. | 直線 | ||
C. | 垂直于極軸的直線 | D. | 圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x0<c | B. | x0>c | C. | x0<b | D. | x0>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com