【題目】如圖,在平面直角坐標系xOy中,F(xiàn)1 , F2分別為橢圓 + =1(a>b>0)的左、右焦點,頂點B的坐標為(0,b),連接BF2并延長交橢圓于點A,過點A作x軸的垂線交橢圓于另一點C,連接F1C.
(1)若點C的坐標為( , ),且BF2= ,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.
【答案】
(1)解:∵C的坐標為( , ),
∴ ,即 ,
∵ ,
∴a2=( )2=2,即b2=1,
則橢圓的方程為 +y2=1
(2)解:設(shè)F1(﹣c,0),F(xiàn)2(c,0),
∵B(0,b),
∴直線BF2:y=﹣ x+b,代入橢圓方程 + =1(a>b>0)得( )x2﹣ =0,
解得x=0,或x= ,
∵A( , ),且A,C關(guān)于x軸對稱,
∴C( ,﹣ ),
則 =﹣ = ,
∵F1C⊥AB,
∴ ×( )=﹣1,
由b2=a2﹣c2得 ,
即e=
【解析】(1)根據(jù)橢圓的定義,建立方程關(guān)系即可求出a,b的值.(2)求出C的坐標,利用F1C⊥AB建立斜率之間的關(guān)系,解方程即可求出e的值.
【考點精析】本題主要考查了橢圓的標準方程的相關(guān)知識點,需要掌握橢圓標準方程焦點在x軸:,焦點在y軸:才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】己知在平面直角坐標系中,圓的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點建立極坐標系,在該極坐標系下,圓是以點為圓心,且過點的圓心.
(1)求圓及圓在平而直角坐標系下的直角坐標方程;
(2)求圓上任一點與圓上任一點之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)用五點作圖法畫出在長度為一個周期的區(qū)間上的圖象;
(2))求函數(shù)的單調(diào)遞增區(qū)間;
(3)簡述如何由的圖象經(jīng)過適當?shù)膱D象變換得到的圖象?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)滿足且,則稱函數(shù)為“函數(shù)”.
試判斷是否為“函數(shù)”,并說明理由;
函數(shù)為“函數(shù)”,且當時,,求的解析式,并寫出在上的單調(diào)遞增區(qū)間;
在條件下,當時,關(guān)于的方程為常數(shù)有解,記該方程所有解的和為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個角處各切去一個邊長是的正方形,然后在余下兩個角處各切去一個長、寬分別為、的矩形,再將剩余部分沿圖中的虛線折起,做成一個有蓋的長方體包裝盒.
(1)求包裝盒的容積關(guān)于的函數(shù)表達式,并求函數(shù)的定義域;
(2)當為多少時,包裝盒的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)=ex,g(x)=x-b,b∈R.
(1)若函數(shù)f (x)的圖象與函數(shù)g(x)的圖象相切,求b的值;
(2)設(shè)T(x)=f (x)+ag(x),a∈R,求函數(shù)T(x)的單調(diào)增區(qū)間;
(3)設(shè)h(x)=|g(x)|·f (x),b<1.若存在x1,x2 [0,1],使|h(x1)-h(x2)|>1成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙3人投籃,投進的概率分別是.
(Ⅰ)現(xiàn)3人各投籃1次,求3人都沒有投進的概率;
(Ⅱ)用表示乙投籃3次的進球數(shù),求隨機變量的概率分布及數(shù)學期望;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙人投籃,投進的概率分別是,,.
(1)現(xiàn)人各投籃次,求人至少一人投進的概率;
(2)用表示乙投籃次的進球數(shù),求隨機變量的概率分布及數(shù)學期望和方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com