已知拋物線和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,拋物線的頂點為坐標(biāo)原點,則雙曲線的標(biāo)準(zhǔn)方程是   
【答案】分析:設(shè)拋物線方程為y2=2px(p>0),將M(1,2)代入,可求拋物線方程,再利用雙曲線的定義可求雙曲線方程.
解答:解:設(shè)拋物線方程為y2=2px(p>0),
將M(1,2)代入y2=2px,得P=2.
∴拋物線方程為y2=4x,焦點為F(1,0)
由題意知雙曲線的焦點為F1(-1,0),F(xiàn)2(1,0)
∴c=1
對于雙曲線,
,

∴雙曲線方程為
故答案為:
點評:本題主要考查雙曲線的標(biāo)準(zhǔn)方程、利用待定系數(shù)法求雙曲線方程,同時考查恒過定點問題,注意挖掘題目隱含,將問題等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.
(1)求這兩條曲線的方程;
(2)直線l過x軸上定點N(異于原點),與拋物線交于A、B兩點且以AB為直徑的圓過原點,試求出定點N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濟寧一模)已知拋物線和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,拋物線的頂點為坐標(biāo)原點,則雙曲線的標(biāo)準(zhǔn)方程是
x2
3-2
2
-
y2
2
2
-2
=1
x2
3-2
2
-
y2
2
2
-2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕頭二模)已知拋物線和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.
(1)求拋物線和雙曲線標(biāo)準(zhǔn)方程;
(2)已知動直線m過點P(3,0),交拋物線于A,B兩點,記以線段AP為直徑的圓為圓C,求證:存在垂直于x軸的直線l被圓C截得的弦長為定值,并求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線和雙曲線都經(jīng)過點,它們在軸上有共同焦點,拋物線的頂點為坐標(biāo)原點,則雙曲線的標(biāo)準(zhǔn)方程是                 .

查看答案和解析>>

同步練習(xí)冊答案