已知f(x+y)=f(x)•f(y),且f(2)=4,則f(8)=
 
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質及應用
分析:直接利用已知條件,逐步求出函數(shù)值即可.
解答: 解:f(x+y)=f(x)•f(y),且f(2)=4,
則f(8)=f(6+2)
=f(6)•f(2)
=f(4+2)•f(2)
=f(4)•f(2)f(2)
=f(2+2)f(2)•f(2)
=[f(2)]4
=44
=256.
故答案為:256.
點評:本題考查函數(shù)的值的求法,抽象函數(shù)的應用,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+3x+2,數(shù)列{an}滿足a1=a,且an+1=f′(an)(n∈N*),則該數(shù)列的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為2的正方體ABCD-A1B1C1D1的內切球為球O,P為球O的球面上動點,DP⊥BC1,則點P的軌跡的周長為( 。
A、π
B、
2
π
C、
3
π
D、2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,若Sn+n=
3
2
an
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}滿足bn=an+λ•(-2)n且數(shù)列{bn}為遞增數(shù)列,求λ的取值范圍;
(Ⅲ)設數(shù)列{cn}滿足cn=
an
an+1
,求證:
n
3
-
1
8
<c1+c2+…+cn
n
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,公園有一塊邊長為4的等邊△ABC的邊角地,現(xiàn)修成草坪,途中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設AD=x,ED=y,求用x表示y的函數(shù)關系式;
(2)如果DE是灌溉水管,為了節(jié)約成本,希望它最短,DE的位置應在哪里;
(3)如果DE是參觀線路,希望它最長,DE的位置又應在哪里?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-1+
a
ex
,(a∈R,e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調區(qū)間;
(2)當a=1時,若直線l:y=kx-1與曲線y=f(x)沒有公共點,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
OB
不共線,且2
OM
=x
OA
+y
OB
,若
MA
=t
AB
(t∈R),則點(x,y)的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,可表示函數(shù)y=f(x)的圖象的只能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中在區(qū)間(1,2)上是增函數(shù)的是(  )
A、y=-2x
B、y=2-x
C、y=
1
x
D、y=x2+2x+1

查看答案和解析>>

同步練習冊答案