如圖,M為橢圓
x2
3
+y2=1
上任意一點(diǎn),P為線段OM的中點(diǎn),求
PF1
PF2
的最小值
-
7
4
-
7
4
分析:由題意設(shè)出P的坐標(biāo),求出
PF1
PF2
,然后直接計(jì)算
PF1
PF2
,即可求出最小值.
解答:解:設(shè)M(
3
cosα ,sinα
),所以P(
3
2
cosα , 
1
2
sinα
),F1(-
2
,0)
,F2(
2
,0)
;
所以
PF1
=(-
2
-
3
2
cosα , -
1
2
sinα)
;
PF2
=(
2
-
3
2
cosα , -
1
2
sinα)
;
所以
PF1
PF2
=(-
2
-
3
2
cosα , -
1
2
sinα)• (
2
-
3
2
cosα , -
1
2
sinα)

=-2+
3
4
cos2α
+
1
4
sin2α
=
1
2
cos2 α-
7
4
≥-
7
4

PF1
PF2
的最小值-
7
4

故答案為:-
7
4
點(diǎn)評(píng):本題是中檔題,考查橢圓的簡(jiǎn)單性質(zhì),橢圓的參數(shù)方程,向量的數(shù)量積等知識(shí),考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x23
+y2=1
.如圖所示,斜率為k(k>0)且不過(guò)原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=-3于點(diǎn)D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求證:直線l過(guò)定點(diǎn);
(ii)試問(wèn)點(diǎn)B,G能否關(guān)于x軸對(duì)稱(chēng)?若能,求出此時(shí)△ABG的外接圓方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在矩形ABCD中,|AB|=2
3
,|AD|=2,E、F、G、H分別為矩形四條邊的中點(diǎn),以HF、GE所在直線分別為x,y軸建立直角坐標(biāo)系(如圖所示).若R、R′分別在線段0F、CF上,且
|OR|
|OF|
=
|CR′|
|CF|
=
1
n

(Ⅰ)求證:直線ER與GR′的交點(diǎn)P在橢圓Ω:
x2
3
+y2=1上;
(Ⅱ)若M、N為橢圓Ω上的兩點(diǎn),且直線GM與直線GN的斜率之積為
2
3
,求證:直線MN過(guò)定點(diǎn);并求△GMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃岡模擬)在矩形ABCD中,|AB|=2
3
,|AD|=2,E、F、G、H分別為矩形四條邊的中點(diǎn),以HF、GE所在直線分別為x,y軸建立直角坐標(biāo)系(如圖所示).若R、R′分別在線段0F、CF上,且
|OR|
|OF|
=
|CR′|
|OF|
=
1
n

(Ⅰ)求證:直線ER與GR′的交點(diǎn)P在橢圓Ω:
x2
3
+y2=1上;
(Ⅱ)若M、N為橢圓Ω上的兩點(diǎn),且直線GM與直線GN的斜率之積為
2
3
,求證:直線MN過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A1,A2分別為橢圓
y2
4
+
x2
3
=1
的下頂點(diǎn)和上頂點(diǎn),F(xiàn)為橢圓的下焦點(diǎn),P為橢圓上異于A1,A2點(diǎn)的任意一點(diǎn),直線A1P,A2P分別交直線l:y=m(m<-2)于M,N點(diǎn)
(1)當(dāng)點(diǎn)P位于y軸右側(cè),且PF∥l時(shí),求直線A1M的方程;
(2)是否存在m值,使得以MN為直徑的圓過(guò)F點(diǎn)?若存在加以證明,若不存在,請(qǐng)說(shuō)明理由;
(3)由(2)問(wèn)所得m值,求線段MN最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案