分析 利用倍角公式、誘導(dǎo)公式化簡f(x),利用其單調(diào)性可得f(x)的值域,再利用絕對值不等式的解法即可得出.
解答 解:函數(shù)$f(x)=4sinx•{sin^2}({\frac{π}{4}+\frac{x}{2}})+cos2x$
=4sinx•$\frac{1-cos(\frac{π}{2}+x)}{2}$+cos2x=2sinx(1+sinx)+1-2sin2x=2sinx+1,
∵$\frac{π}{6}≤x≤\frac{2π}{3}$,∴sinx∈$[\frac{1}{2},1]$,∴f(x)∈[2,3].
∵|f(x)-m|<2成立的充分條件是$\frac{π}{6}≤x≤\frac{2π}{3}$,
∴f(x)-2<m<f(x)+2,即0<m<5.
則實數(shù)m的取值范圍為(0,5).
故答案為:(0,5).
點評 本題考查了倍角公式、誘導(dǎo)公式、三角函數(shù)的單調(diào)性、絕對值不等式的解法、充要條件,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{43}{48}$ | B. | $-\frac{11}{24}$ | C. | $\frac{29}{36}$ | D. | $\frac{11}{48}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f[g(x)]的零點有且僅有6個 | B. | 函數(shù)g[f(x)]的零點有且僅有3個 | ||
C. | 函數(shù)f[f(x)]的零點有且僅有5個 | D. | 函數(shù)g[g(x)]的零點有且僅有4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com