已知函數(shù)f(x+1)=3x+2,則f(x)的解析式為_________  

試題分析:設(shè)x+1=t,則x=t-1,所以,即
點評:若已知復(fù)合函數(shù)f[g(x)]的解析式,求原函數(shù)f(x)的解析式,常用換元法。令g(x)=" t" ,求f(t)的解析式,再把t換為x即可。 但要注意換元后,應(yīng)注意新變量的取值范圍,即為函數(shù)的定義域。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義在(-∞,—1)∪(1,+∞)上的奇函數(shù)滿足:①f(3)=1;②對任意的x>2, 均有f(x)>0,③對任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1) 
⑴試求f(2)的值;
⑵證明f(x)在(1,+∞)上單調(diào)遞增;
⑶是否存在實數(shù)a,使得f(cos2θ+asinθ)<3對任意的θ(0,π)恒成立?若存在,請求出a的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),,
(1)      判斷函數(shù)的奇偶性,并證明;
(2) 判斷的單調(diào)性,并說明理由。(不需要嚴(yán)格的定義證明,只要說出理由即可)
(3) 若,方程是否有根?如果有根,請求出一個長度為1的區(qū)間,使;如果沒有,請說明理由。(注:區(qū)間的長度=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),當(dāng)時,,的值分別為(   )
A.1 , 0B.0 , 0C. 1 , 1D.0 , 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某商品在近30天內(nèi)每天的銷售價格P(元)與時間t(天)的函數(shù)關(guān)系式為:
P=;該商品的日銷售量Q(件)與時間(天)的函數(shù)關(guān)系式為:
Q=-t+40(0<t≤30,t∈N*).求這種商品日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的哪一天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若奇函數(shù)在定義域上遞減,且,則的取值范圍是_____ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的函數(shù)滿足,且.若當(dāng)時不等式成立,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則的值為(  )
A.B.C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)廣東某民營企業(yè)主要從事美國的某品牌運動鞋的加工生產(chǎn),按國際慣例以美元為結(jié)算貨幣,依據(jù)以往加工生產(chǎn)的數(shù)據(jù)統(tǒng)計分析,若加工產(chǎn)品訂單的金額為萬美元,可獲得加工費近似為萬美元,受美聯(lián)儲貨幣政策的影響,美元貶值,由于生產(chǎn)加工簽約和成品交付要經(jīng)歷一段時間,收益將因美元貶值而損失萬美元,其中為該時段美元的貶值指數(shù),,從而實際所得的加工費為(萬美元).
(Ⅰ)若某時期美元貶值指數(shù),為確保企業(yè)實際所得加工費隨的增加而增加,該企業(yè)加工產(chǎn)品訂單的金額應(yīng)在什么范圍內(nèi)?
(Ⅱ)若該企業(yè)加工產(chǎn)品訂單的金額為萬美元時共需要的生產(chǎn)成本為萬美元,已知該企業(yè)加工生產(chǎn)能力為(其中為產(chǎn)品訂單的金額),試問美元的貶值指數(shù)在何范圍時,該企業(yè)加工生產(chǎn)將不會出現(xiàn)虧損.

查看答案和解析>>

同步練習(xí)冊答案