某幾何體的三視圖如圖所示,則該幾何體的體積為
 

考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的棱柱,求出底面面積和高,代入棱柱體積公式,可得答案.
解答: 解:由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的棱柱,
其底面面積S=
1
2
×(1+2)×1=
3
2
,
高h=1,
故棱錐的體積V=
1
3
Sh=
1
3
×
3
2
×1=
1
2
,
故答案為:
1
2
點評:本題考查的知識點由三視圖求體積和表面積,其中根據(jù)已知中的三視圖,判斷出幾何體的形狀,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(x+
1+x2
).
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)求f(x)的單調(diào)區(qū)間并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如圖,根據(jù)圖中標出的尺寸,可得這個幾何體的表面積是(  )
A、
3
2
B、7+
2
C、7+2
2
D、10+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
x
2
-
a
x
)6
展開式中的常數(shù)項是60,則實數(shù)a的值是(  )
A、±1
B、±
2
C、±2
D、±2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a≤0”是“函數(shù)f(x)=|(ax-1)x|在區(qū)間(0,+∞)內(nèi)單調(diào)遞增”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC在中,角A,B,C所對的邊分別為a,b,c,且acosC+
3
2
c=b,則角A(  )
A、
π
3
B、
π
6
C、
π
4
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Mcos(ωx+ϕ)(M>0,ω>0,0<ϕ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,AC=BC=
2
2
,∠C=90°,則f(
1
2
)
=( 。
A、-
1
2
B、
1
2
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(0,-
5
)是中心在原點,長軸在x軸上的橢圓的一個頂點,離心率為
6
6
,橢圓的左右焦點分別為F1和F2
(Ⅰ)求橢圓方程;
(Ⅱ)點M在橢圓上,求△MF1F2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l1:x+ay+6=0,l2:ax+2(a-3)y+2a=0,則l1⊥l2的充要條件是a=
 

查看答案和解析>>

同步練習(xí)冊答案