10.在△ABC中,角A、B、C所對邊分別為a、b、c,若bcosC=ccosB成立,則△ABC是等腰三角形.

分析 運(yùn)用正弦定理,化簡ccosB=bcosC,即sinCcosB=sinBcosC⇒sin(B-C)=0,B=C,推出三角形的形狀.

解答 解:∵bcosC=ccosB,
∴sinCcosB=sinBcosC,
∴sin(B-C)=0,
∴B=C,
∴三角形是等腰三角形.
故答案為:等腰.

點評 本題考查正弦定理的應(yīng)用,三角形形狀的判斷,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某醫(yī)院為了提高服務(wù)質(zhì)量,對掛號處的排隊人數(shù)進(jìn)行了調(diào)查,發(fā)現(xiàn):當(dāng)還未開始掛號時,有N個人已經(jīng)在排隊等候掛號;開始掛號后排隊的人數(shù)平均每分鐘增加M人.假定掛號的速度是每個窗口每分鐘K個人,當(dāng)開放一個窗口時,40分鐘后恰好不會出現(xiàn)排隊現(xiàn)象;若同時開放兩個窗口時,則15分鐘后恰好不會出現(xiàn)排隊現(xiàn)象.根據(jù)以上信息,若要求8分鐘后不出現(xiàn)排隊現(xiàn)象,則需要同時開放的窗口至少應(yīng)有4個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列$\{\frac{1}{n(n+2)}\}$前10項的和為$\frac{175}{264}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,正方體ABCD-A1B1C1D1的棱長為$\sqrt{3}$,以頂點A為球心,2為半徑作一個球,則圖中球面與正方體的表面相交所得到的兩段弧長之和($\widehat{GF}$+$\widehat{EF}$)等于$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某一天,一船從南岸出發(fā),向北岸橫渡.根據(jù)測量,這一天水流速度為3km/h,方向正東,風(fēng)的方向為北偏西30°,受風(fēng)力影響,靜水中船的漂行速度為3km/h,若要使該船由南向北沿垂直與河岸的方向以2$\sqrt{3}$km/h的速度橫渡,求船本身的速度大小及方向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)過曲線f(x)=ex+x(e為自然對數(shù)的底數(shù))上任意一點處的切線為l1,總存在過曲線g(x)=2cosx-ax上一點處的切線l2,使得l1⊥l2,則實數(shù)a的取值范圍為[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示的程序框圖,輸出的S值為( 。
A.$\frac{13}{16}$B.$\frac{13}{12}$C.$\frac{13}{8}$D.$\frac{13}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,點M是邊BC的中點.若∠A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-$\frac{1}{2}$,則|${\overrightarrow{AM}}$|的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在二項式($\frac{x}{2}$+$\frac{2}{\root{3}{x}}$)n(其中n∈N*)的展開式中,第5項的二項式系數(shù)最大,則展開式中的常數(shù)項是( 。
A.1972B.448C.896D.224

查看答案和解析>>

同步練習(xí)冊答案