【題目】甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)機(jī)床生產(chǎn)的零件各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
測試指標(biāo) | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
甲機(jī)床 | 8 | 12 | 40 | 32 | 8 |
乙機(jī)床 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機(jī)床生產(chǎn)1件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元,假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的利潤(單位:元);
(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任意抽取2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.
【答案】(1);(2)5720元;(3)
【解析】
(1)直接利用頻率公式求甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的頻率,用頻率估計(jì)概率;
(2)先計(jì)算出甲機(jī)床生產(chǎn)的零件每件的平均利潤,再估計(jì)甲機(jī)床該天的利潤;
(3)利用古典概型的概率公式求這2件都是乙機(jī)床生產(chǎn)的概率.
(1)因?yàn)榧讬C(jī)床生產(chǎn)的零件為優(yōu)品的頻率,
乙機(jī)床生產(chǎn)的零件為優(yōu)品的頻率為,
所以用頻率估計(jì)概率,估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率分別為.
(2)甲機(jī)床生產(chǎn)的零件每件的平均利潤為(元),
所以估計(jì)甲機(jī)床生產(chǎn)的產(chǎn)品每件的利潤為114.4元,
所以甲機(jī)床該天生產(chǎn)50件零件的利潤為(元).
(3)由題意知,甲機(jī)床應(yīng)抽取(件),乙機(jī)床應(yīng)抽取(件),
記甲機(jī)床生產(chǎn)的2件零件為A,B,乙機(jī)床生產(chǎn)的3件零件為,
若從5件中任意抽取2件,有,共10個(gè)樣本點(diǎn),
其中2件都是乙機(jī)床生產(chǎn)的有,共3個(gè)樣本點(diǎn).
所以,從這5件中任意抽取2件,這2件都是乙機(jī)床生產(chǎn)的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù)的圖象關(guān)于直線對(duì)稱,當(dāng)時(shí),.
(1)作出的圖象;
(2)求的解析式;
(3)若關(guān)于x的方程有解,將方程所有解的和記作M,結(jié)合(1)中的圖象,求M的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,,(為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)定義:曲線在點(diǎn)處的切線方程為.若拋物線上存在點(diǎn)(不與原點(diǎn)重合)處的切線交橢圓于、兩點(diǎn),線段的中點(diǎn)為.直線與過點(diǎn)且平行于軸的直線的交點(diǎn)為,證明:點(diǎn)必在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.
求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);
估計(jì)用電量落在中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明某天偶然發(fā)現(xiàn)班上男同學(xué)比女同學(xué)更喜歡做幾何題,為了驗(yàn)證這一現(xiàn)象是否具有普遍性,他決定在學(xué)校開展調(diào)查研究:他在全校3000名同學(xué)中隨機(jī)抽取了50名,給這50名同學(xué)同等難度的幾何題和代數(shù)題各一道,讓同學(xué)們自由選擇其中一道題作答,選題人數(shù)如下表所示,但因不小心將部分?jǐn)?shù)據(jù)損毀,只是記得女生選擇幾何題的頻率是.
幾何題 | 代數(shù)題 | 合計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | |||
合計(jì) |
(1)根據(jù)題目信息補(bǔ)全上表;
(2)能否根據(jù)這個(gè)調(diào)查數(shù)據(jù)判斷有的把握認(rèn)為選代數(shù)題還是幾何題與性別有關(guān)?
參考數(shù)據(jù)和公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | p>5.024 | 6.635 | 7.879 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某球迷為了解兩支球隊(duì)的攻擊能力,從本賽季常規(guī)賽中隨機(jī)調(diào)查了20場與這兩支球隊(duì)有關(guān)的比賽.兩隊(duì)所得分?jǐn)?shù)分別如下:
球隊(duì):122 110 105 105 109 101 107 129 115 100
114 118 118 104 93 120 96 102 105 83
球隊(duì):114 114 110 108 103 117 93 124 75 106
91 81 107 112 107 101 106 120 107 79
(1)根據(jù)兩組數(shù)據(jù)完成兩隊(duì)所得分?jǐn)?shù)的莖葉圖,并通過莖葉圖比較兩支球隊(duì)所得分?jǐn)?shù)的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可);
(2)根據(jù)球隊(duì)所得分?jǐn)?shù),將球隊(duì)的攻擊能力從低到高分為三個(gè)等級(jí):
球隊(duì)所得分?jǐn)?shù) | 低于100分 | 100分到119分 | 不低于120分 |
攻擊能力等級(jí) | 較弱 | 較強(qiáng) | 很強(qiáng) |
記事件“球隊(duì)的攻擊能力等級(jí)高于球隊(duì)的攻擊能力等級(jí)”.假設(shè)兩支球隊(duì)的攻擊能力相互獨(dú)立. 根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若在上是單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;
若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求實(shí)數(shù)a的取值范圍;
設(shè)m,n為正實(shí)數(shù),且,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com