已知
lim
n→∞
2n2
2+n
-an)=b,則常數(shù)a、b的值分別為( 。
A、a=2,b=-4
B、a=-2,b=4
C、a=
1
2
,b=-4
D、a=-
1
2
,b=
1
4
考點:極限及其運算
專題:計算題
分析:利用數(shù)列極限的運算法則即可得出.
解答: 解:∵
2n2
2+n
-an
=
2n(n+2)-4(n+2)+8
2+n
-an=(2-a)n-4+
8
2+n
lim
n→∞
8
2+n
=0

∴b=
lim
n→∞
(
2n2
2+n
-an)
=
lim
n→∞
[(2-a)n-4+
8
2+n
]
=-4,2-a=0.
∴a=2,b=-4.
故選:A.
點評:本題考查了數(shù)列極限的運算法則,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

y=-sin2x-2cosx+2,x∈R的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x2-4x.
(1)求f(-1)的值;
(2)當x<0時,求f(x)的解析式;
(3)若函數(shù)f(x)的圖象與直線g(x)=k有四個不同交點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1且
an+1
an
=
n+1
n
,則a2013=(  )
A、2010B、2011
C、2012D、2013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程x2+(a-4)x+4-2a=0有兩個正實數(shù)根的充要條件是( 。
A、a<4B、0<a<2
C、2<a<4D、a>4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x2-4
+
1
x-3
的定義域為( 。
A、[2,+∞)∪(-∞,-2]
B、[2,3)∪(3,+∞)
C、[2,3)∪(3,+∞)∪(-∞,-2]
D、(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-5x+4≤0},B={x|x2-(a+2)x+2a≤0},C={x|m-1≤x≤2m+1},且C≠∅.
(1)若A∩C=∅,試求實數(shù)m的取值范圍;
(2)若B⊆A,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:四面體P-ABC為正四面體,M為PC的中點,則BM與AC所成的角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

分解因式:x2y-2xy+y=
 

查看答案和解析>>

同步練習冊答案