根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:
(1)已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱(chēng)軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為,過(guò)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的一個(gè)焦點(diǎn);
(2)經(jīng)過(guò)兩點(diǎn)A(0,2)和B.
(1)=1或=1(2)
(1)設(shè)橢圓的標(biāo)準(zhǔn)方程是=1或=1,
則由題意知2a=|PF1|+|PF2|=2,∴a=.
在方程=1中令x=±c得|y|=
在方程=1中令y=±c得|x|=
依題意并結(jié)合圖形知=.  ∴b2=.
即橢圓的標(biāo)準(zhǔn)方程為=1或=1.
(2)設(shè)經(jīng)過(guò)兩點(diǎn)A(0,2),B的橢圓標(biāo)準(zhǔn)方程為
mx2+ny2=1,代入A、B得
, ∴所求橢圓方程為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓=1的焦距為2,則m的值等于__________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知離心率為的橢圓過(guò)點(diǎn),是坐標(biāo)原點(diǎn).
(1)求橢圓的方程;                                               
(2)已知點(diǎn)為橢圓上相異兩點(diǎn),且,判定直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是橢圓的左、右焦點(diǎn),是橢圓上位于第一象限內(nèi)的一點(diǎn),點(diǎn)也在橢圓上,且滿足為坐標(biāo)原點(diǎn)),.若橢圓的離心率等于
(1)求直線的方程;
(2)若三角形的面積等于,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在周長(zhǎng)為定值的中,已知,且當(dāng)頂點(diǎn)位于定點(diǎn)時(shí),有最小值為.(1)建立適當(dāng)?shù)淖鴺?biāo)系,求頂點(diǎn)的軌跡方程.(2)過(guò)點(diǎn)作直線與(1)中的曲線交于、兩點(diǎn),求的最小值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),離心率為,一個(gè)焦點(diǎn)是F(-m,0)(m是大于0的常數(shù)).
(1)求橢圓的方程;
(2)設(shè)Q是橢圓上的一點(diǎn),且過(guò)點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,若||=2||,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓左右焦點(diǎn)分別為、,點(diǎn)在橢圓上,若、、是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)P到軸的距離為( )
       B  3         C                D  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)P在橢圓7x2+4y2=28上,則點(diǎn)P到直線3x-2y-16=0的距離的最大值為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線交橢圓兩點(diǎn),橢圓與軸的正半軸交于點(diǎn),若的重心恰好落在橢圓的右焦點(diǎn),則直線的方程是               (    )                               
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案