3.位于直角坐標(biāo)原點(diǎn)的質(zhì)點(diǎn)P按一下規(guī)則移動(dòng):①每次移動(dòng)一個(gè)單位②向左移動(dòng)的概率為$\frac{1}{4}$,向右移動(dòng)的概率為$\frac{3}{4}$.移動(dòng)5次后落在點(diǎn)(-1,0)的概率為( 。
A.C${\;}_{5}^{3}$($\frac{1}{4}$)3($\frac{3}{4}$)2B.C${\;}_{5}^{3}$($\frac{1}{4}$)2($\frac{3}{4}$)3C.C${\;}_{4}^{2}$($\frac{1}{4}$)3($\frac{3}{4}$)2D.C${\;}_{4}^{2}$($\frac{1}{4}$)2($\frac{3}{4}$)3

分析 根據(jù)題意,分析可得質(zhì)點(diǎn)P移動(dòng)五次后位于點(diǎn)(-1,0),其中向左移動(dòng)3次,向右移動(dòng)2次,進(jìn)而借助排列、組合分析左右平移的順序情況,由相互獨(dú)立事件的概率公式,計(jì)算可得答案.

解答 解:根據(jù)題意,質(zhì)點(diǎn)P移動(dòng)五次后位于點(diǎn)(-1,0),其中向左移動(dòng)3次,向右移動(dòng)2次;
其中向左平移的3次有${C}_{5}^{3}$種情況,剩下的2次向右平移;
則其概率為${C}_{5}^{3}$×(${(\frac{1}{4})}^{3}$×${(\frac{3}{4})}^{2}$,
故選:A.

點(diǎn)評(píng) 本題考查相互獨(dú)立事件的概率的計(jì)算,其難點(diǎn)在于分析質(zhì)點(diǎn)P移動(dòng)五次后位于點(diǎn)(-1,0)的實(shí)際平移的情況,這里要借助排列組合的知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{a}{x}+lnx-1,a∈R$.
(1)若曲線y=f(x)在P(1,f(1))處的切線平行于直線y=-x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a>0,且對(duì)任意x∈(0,2e]時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{{S}_{12}}{12}$=24,$\frac{{S}_{9}}{9}$=18,則S5=( 。
A.18B.36C.50D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖四棱椎P-ABCD中,四邊形ABCD是矩形,平面PAD⊥平面ABCD,其中M,N分別是PD,BC的中點(diǎn)
(Ⅰ)求證:BA⊥平面PAD
(Ⅱ)求證:MN∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合.曲線${C_1}:\left\{\begin{array}{l}x=1+\sqrt{2}t\\ y=-\sqrt{2}t\end{array}\right.$(t為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=ρcos2θ+8cosθ.
(Ⅰ)將曲線C1,C2分別化為普通方程、直角坐標(biāo)方程,并說明表示什么曲線;
(Ⅱ)設(shè)F(1,0),曲線C1與曲線C2相交于不同的兩點(diǎn)A,B,求|AF|+|BF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=|x-1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若任意x∈R使不等式$f(x)≥\frac{2}{9}({a^2}+\frac{a}{2}+9)$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn滿足a1=1,log2an=log2an+1-1,則$\frac{{{S_{20}}-{S_{17}}}}{{{a_{20}}-{a_{17}}}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的前n項(xiàng)和是Sn,且滿足an+3Sn•Sn-1=0(n≥2),若${S_6}=\frac{1}{20}$,則a1=(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.5D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在三角形ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若2bcosB=acosC+ccosA
(1)求角B的大;
(2)若線段BC上存在一點(diǎn)D,使得AD=2,且AC=$\sqrt{6}$,CD=$\sqrt{3}$-1,求S△ABC

查看答案和解析>>

同步練習(xí)冊(cè)答案